

Red River secures high-grade polymetallic silver-indium deposits in QLD

Highlights:

- Red River granted two new polymetallic projects hosting the highest-grade known indium deposits in Australia:
 - Isabel Project includes Isabel massive sulphide deposit and Isabel Extended exploration target
 - Orient Project includes the West Orient epithermal deposit and East Orient exploration target
- Indium is identified as a critical mineral by Geoscience Australia
- Projects are located near Herberton in Qld, about 500km from RVR's Thalanga Operations
- Isabel deposit has historic mineral resource estimate of 85kt @ 15.3% Zn, 2.8% Pb, 0.7% Cu, 113 g/t Ag & 370 g/t indium (the historical estimate is not compliant with the 2012 JORC Code, drilling and sampling will be required prior to any further quantification of the resource) within 100 metres of surface
- Previous drilling at Isabel Extended target intersected massive sulphide mineralisation (7.25m @ 3.3% Cu), 150m from Isabel deposit
- West Orient has historical mineral resource estimate of 229kt @ 5.1% Zn, 2.9% Pb, 180 g/t Ag & 190 g/t In (the historical estimate is not compliant with the 2012 JORC Code, drilling and sampling will be required prior to any further quantification of the resource)
- Historic drilling at East Orient intersected wide intersections (34m @ 68 g/t Ag from 20m down hole) of low-grade epithermal mineralisation yet to be followed up
- Isabel and Orient deposits have potential to provide additional feed to Thalanga Operations or be developed as stand-alone operations. Red River is collating and modelling data from the projects and has undertaken initial site visits.

Cautionary Statement:

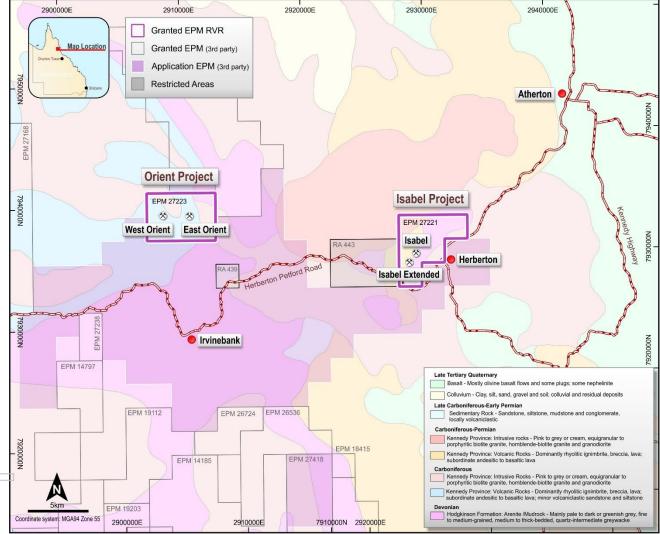
Readers are cautioned that the historical estimates for the Isabel and West Orient Deposits, referred to in this announcement are historical estimates under ASX Listing Rule 5.12 and are not reported in accordance with the JORC Code. A Competent Person has not done sufficient work to classify the historical estimates as mineral resources or ore reserve in accordance with the JORC Code.

It is uncertain that following evaluation and/or further exploration work that the historical estimates will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code. ASX Listing Rule 5.12 specifies the additional information that must be provided in a market announcement that contains historical estimates. This information is contained in Appendices together with additional information on the historical Isabel and West Orient Project estimates.

Address: Level 6, 350 Collins Street, Melbourne, VIC, 3000, Australia

T: +61 3 9017 5380 F: +61 3 9670 5942 E: info@redriverresources.com.au

Figure 1 Historic Workings at Orient

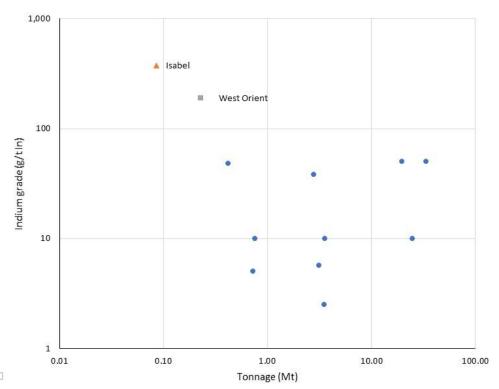


Red River Resources Limited (ASX: RVR) ("Red River" or "the Company") is pleased to announce it has been granted the Isabel Project (EPM 27221) and the Orient Project (EPM 27223), located near Herberton in Northern Queensland, approximately 500km from its Thalanga Operation (by sealed road).

Isabel (average indium grade of 370 g/t) and West Orient (average indium grade of 190 g/t) are the highest grade known indium deposits in Australia.

The Isabel Project contains the Isabel polymetallic massive sulphide zinc-lead-copper-silver-indium deposit and the Isabel Extended exploration target, and the Orient Project contains the West Orient zinc-lead-silverindium deposit and the East Orient exploration target.

Geoscience Australia (Australian Critical Minerals Prospectus, 2019), and other strategic partners of Australia, including the European Union, France, Japan, Korea, India and the United Kingdom have defined indium as a critical mineral.


Critical minerals are defined as metals, non-metals and minerals that are considered vital for the economic well-being of the world's major and emerging economies, yet whose supply may be at risk due to geological scarcity, geopolitical issues, trade policy or other factors. Indium is a critical element in low carbon technologies - CIGS (copper-indium-gallium-selenide) thin film solar cells.

Indium is found in trace amounts in base metal sulphides, particularly chalcopyrite, sphalerite, stannite, and cassiterite. Although indium's concentration is highest within chalcopyrite, where concentrations are twice as high as in sphalerite, sphalerite remains the most important indium-bearing mineral for indium recovery.

The average indium content of zinc deposits from which it is recovered ranges from less than 1 ppm to 100 ppm. The indium reports to the zinc concentrate and the indium is recovered at the smelting/refining stage.

The indium price is currently US\$250/kg.

Figure 3 Australian deposits with known indium grade

Source: Werner (2017)

1 Isabel Massive Sulphide Deposit (zinc-lead-copper-silver-indium)

The Isabel deposit consists of massive zinc-lead-copper sulphide mineralisation (containing indium and silver), occurring in fine-grained and breccia quartzites. The sulphides are located on both sides of a northwest-southeast trending quartz feldspar dyke.

Work completed on the deposit and vicinity included detailed mapping, geochemical soil sampling, underground sampling, geophysical surveying and both percussion and diamond drilling. Great Northern Mining Corporation NL (GNMC) and Mareeba Mining and Exploration Pty. Ltd. (Mareeba Mining) carried out a 57-hole percussion and diamond drilling program during 1970-1972.

Table 1 Isabel Drilling Programs

Company	Date	Program
Great Northern Mining Corporation	1970	36 percussion and diamond drill holes
Mareeba Mining & Exploration Pty Ltd	September 1971 – May 1972	5 percussion holes and 16 diamond drill holes

Mareeba Mining engaged independent geological and mining consultants Watts, Griffis and McOuat (WGM) to complete an evaluation of the Isabel deposit (preliminary mining study) and Australian Mineral Development Laboratories (AMDEL) to undertake metallurgical test work on samples from Isabel. WGM completed the Isabel Deposit Evaluation in 1972, calculating an historical reserve estimate (non-JORC 2012 compliant) of 83,236 long tons at an average grade of 15.3% zinc, 2.8% lead, 0.7% copper, 3.7 ounces silver, 12.1 ounces indium and 25.5 ounces cadmium per ton for the Isabel deposit within 100 metres of the surface.

Section	Tons	Zn (%)	Pb (%)	Cu (%)	Ag (oz/t)	In (oz/t)	Cd (oz/t)
00 SE Upper Lens	12,517	25.61	0.57	0.86	3.21	12.03	40.0
00 SE Lower Lens	5,760	21.01	1.73	0.85	3.31	9.71	35.0
0+50' SE Lower Lens	22,720	13.37	6.89	0.45	2.25	14.65	25.0
0+100' SE Lower Lens	16,396	3.59	2.14	0.72	5.70	9.97	14.62
0+150' SE Lower Lens	24,193	11.70	0.73	0.61	4.02	11.05	23.53
0+200' SE Lower Lens	1,630	17.78	4.17	1.00	5.81	20.12	27.94
Total	83,236	15.3	2.8	0.7	3.7	12.1	25.53
	Tonnes	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	In (g/t)	Cd (g/t)
Isabel	84,570	15.3	2.8	0.7	113	370	771
Reference: "Evaluation of the Isabel Leases, North Queensland for Mareeba Mining and Exploration Pty Ltd" by Watts, Griffis and McOuat (Australia) Pty Ltd dated June 22, 1972.							

Table 2 Isabel Historical Estimate

The known mineralisation at Isabel has not been constrained by the historical drilling and there is material potential to increase the historical resource.

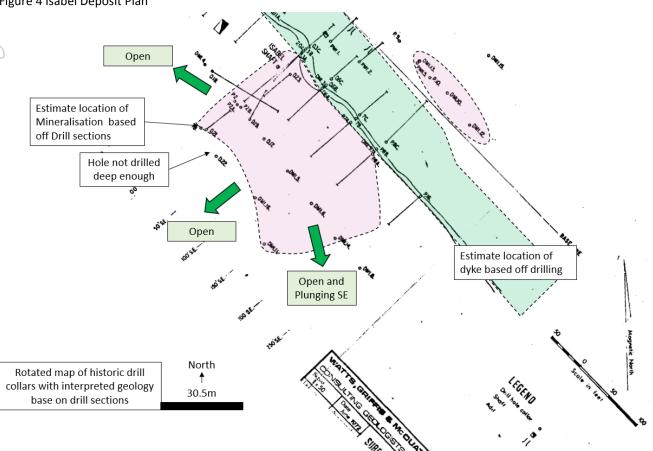


Figure 4 Isabel Deposit Plan

Reference: "Evaluation of the Isabel Leases, North Queensland for Mareeba Mining and Exploration Pty Ltd" by Watts, Griffis and McOuat (Australia) Pty Ltd dated June 22, 1972.

WGM also completed initial mine design work on a small-scale fully mechanised underground mine at Isabel. Access would be via a decline, and the mine would have a vertical extent of approximately 150m. WGM anticipated producing approximately 92,000 tonnes of ore (allowing for dilution) over a two year mine life.

AMDEL completed metallurgical test work on a bulk composite of drill core from Isabel, which concluded selective flotation of the Isabel bulk composite to produce separate lead and zinc concentrates posed no serious metallurgical problem. AMDEL concluded that due to the nature of the copper mineralisation present it was not viable to produce a separate copper concentrate, however it was possible to produce a bulk lead-copper concentrate.

The AMDEL metallurgical test results were as follows:

Table 3 Recovery to Lead Concentrate & Lead Concentrate Grade

	Cu %	Pb %	Zn %	Sn %	In %	Ag %	Cd %	As %
Recovery to Lead Concentrate	11%	75%	2%	4%	3.4%	34%	2%	2%
	Cu %	Pb %	Zn %	Sn %	In (g/t)	Ag (g/t)	Cd %	As %
Lead Concentrate Grade	3%	60%	6%	1%	700	2,600	0.0%	0.8%

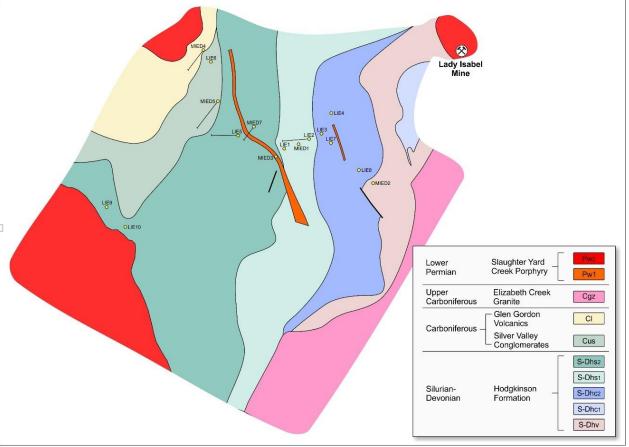
Table 4 Recovery to Zinc Concentrate & Zinc Concentrate Grade

	Cu %	Pb %	Zn %	Sn %	In %	Ag %	Cd %	As %
Recovery to Zinc Concentrate	51%	17%	85%	29%	74.5%	43%	86%	na
	Cu %	Pb %	Zn %	Sn %	In (g/t)	Ag (g/t)	Cd %	As %
Zinc Concentrate Grade	2.5%	2.2%	50%	1.6%	2,550	440	0.3%	0.5%

Figure 5 Polymetallic massive sulphide mineralisation from Isabel

1.1 Lady Isabel Extended

The Lady Isabel Extended target area is approximately 150m south of the Isabel deposit. No recorded mining has taken place within the Lady Isabel Extended target area but numerous small diggings with shafts and development to about 6m depth or so are present.


In the early 1970s, Mareeba Mining completed geological mapping, soil geochemistry and an IP survey, followed by additional geophysical surveying, geochemistry and drilling in the early 1980s. Six NQ diameter diamond drill holes targeting geophysical and geochemical anomalies were completed (MIED 1, 2 and 3 in 1980; MIED 4, 5 and 7 in 1981) for a total of 1,1740.4m drilled. Material polymetallic massive sulphide mineralisation was intersected in drill holes MIED 1 and MIED 3.

Hole ID	From	То	Intersection	Cu	Pb	Zn	Sn	As	Ag	
	(m)	(m)	(m) ⁽¹⁾	(%)	(%)	(%)	(%)	(%)	(g/t)	Mineralisation
MIED 1	177.20	178.65	1.45	3.1	0.0	0.3	0.1	0.1	32	Fresh Sulphide
and	182.13	189.38	7.25	3.3	0.2	0.4	0.2	4.2	173	Fresh Sulphide
MIED 3	MIED 3 91.08 93.37 2.55 2.0 1.0 13.2 1.1 - 409 Fresh Sulphide								Fresh Sulphide	
(1) Downhole width (vertical holes)										
Reference: Lady Isabel Extended ML 6647 Herberton NQ Summary Report (1982)										

Table 5 Material drill hole assay summary (MIED 1 & MIED 3 Lady Isabel Extended)

Mareeba Mining completed a further 10 NQ/NQ2 diameter diamond drill holes (DDH LIE 1 to 10) for 1,700m in August – October 1990. Massive sulphide mineralisation (sphalerite-galena-chalcopyrite) was intersected from 35.42 – 36.38m down hole (0.96m thickness) in DDH LIE 6, but assay results are not available.

Figure 6 Lady Isabel Extended Drilling

8

2 Orient Project

The Orient Project (EPM 27223) consists of the West Orient zinc-lead-silver-indium deposit and the East Orient exploration target. The Project is located 9km north of Irvinebank in Northern Queensland. Silver-lead mineralisation was discovered in 1886 and mining activities ceased in 1924.

Mineralisation occurs in vein systems up to 2m wide (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor).

The lead-zinc-silver-indium mineralisation at Orient is believed to represent part of an epithermal precious metals system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure.

Great Northern Mining Corporation (GNMC) completed 16 diamond drill holes at West Orient, with the most recent drilling (4 holes) completed in 1988. Results from GNMC drilling indicated there are four major and two minor mineralised vein systems in a north-east trending shear zone. Individual veins have a strike length of up to 900m, and an average width of 0.6m. Dips range from 40° south to almost vertical but are most commonly between 45°–60° south. GNMC also completed an exploration adit into West Orient which intersected the No2 vein system.

Vein	DDH No	From (m)	To (m)	Intersection (m)	Pb %	Zn %	Ag g/t	In g/t
Vein 1	WO3	192.60	193.60	1.00	2.4	2.4	327	90
	W012	202.00	202.90	0.90	2.8	2.9	323	na
Vein 2	WO4	82.00	82.65	0.65	10.7	7.3	746	233
	WO5	90.00	91.50	1.50	4.2	3.6	258	140
	WO6	118.70	120.10	1.40	4.2	3.0	308	146
	W07	86.75	87.65	0.90	8.4	4.0	454	140
	WO8	83.80	85.00	1.20	1.2	3.4	75	93
	WO9	60.30	63.30	3.00	1.8	1.7	75	na
	WO10	123.30	123.80	0.50	6.8	3.6	249	87
	W013	125.60	127.10	1.50	1.3	6.1	100	230
	W014	69.00	75.40	6.40	1.2	1.1	40	37
	inc.	71.25	71.90	0.65	5.3	2.8	274	283
Vein 3	WO2	69.00	69.60	0.60	8.1	5.8	345	na
	WO3	82.00	83.20	1.20	3.0	4.5	50	na
	WO10	50.00	51.00	1.00	3.8	14.2	96	na
	W011	38.50	38.90	0.40	16.5	16.0	840	na
	W013	33.70	36.05	2.35	2.1	2.0	274	71
	inc.	33.70	34.2	0.50	9.0	8.4	1,264	335
	W015	118.70	121.45	2.75	1.7	4.2	93	83
	inc.	119.70	120.45	0.75	5.4	14.3	307	287
	WO16	50.30	51.45	1.15	1.4	2.5	130	96
	inc.	51.10	51.45	0.35	4.4	6.4	412	309
Vein 4	WO1	98.00	98.75	0.75	17.2	12.0	513	na

Table 6 GNMC Drilling West Orient

GNMC calculated an historical reserve estimate (non-JORC 2012 compliant) of 229,000 tonnes at an average grade of 2.9% Pb, 5.1% Zn, 180 g/t Ag & 190 g/t In for Vein 2 and Vein 3 only at the West Orient deposit. Drilling did not delineate the margins of mineralisation, leaving it open to extension in all directions.

Table 7 West Orient Historical Estimate

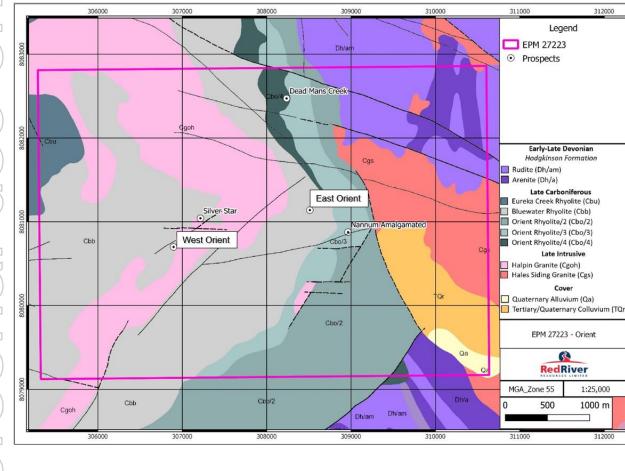
		Tonnes	Pb (%)	Zn (%)	Ag (g/t)	In (g/t)		
	West Orient	229,000	2.9	5.1	180	190		
	Reference: "Pre-Feasibility Mining Report West Orient Silver-Lead-Zinc Project" Great Northern Mining Corporation, January 1989							

GNMC envisaged a small scale UG mining operation at West Orient, with surface access via the exploration adit previously completed by GNMC (intersecting Vein 2), and an internal decline to allow mining access to Vein 2 and Vein 3.

GNMC engaged Robertson Research (1988), who completed limited metallurgical test work on drill core from West Orient. Test work was carried out to produce a gravity concentrate and selective flotation to produce separate zinc and lead concentrates, and a bulk lead-zinc concentrate. No work was carried out on indium recoveries. GNMC noted that they assumed 70% of the indium would be recovered to the zinc concentrate and the zinc concentrate would have an assumed indium grade of ~1,500 g/t In.

Table 8 Lead & Zinc Concentrate Recovery and Grade

	Pb %	Zn %	Ag %		Pb %	Zn %	Ag g/t
Recovery to Lead Concentrate	90%	-	60%	Lead Concentrate Grade	48%	-	2,017
Recovery to Zinc Concentrate	-	85%	10%	Zinc Concentrate Grade	-	47%	199

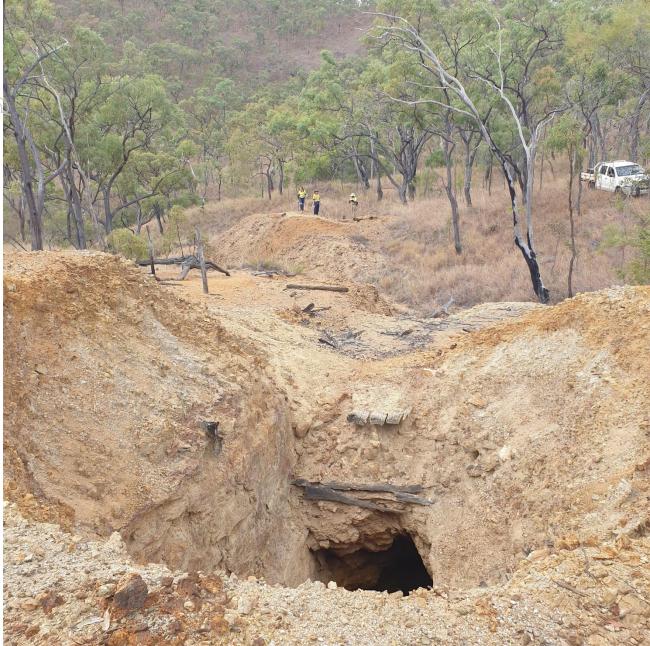

Figure 7 Galena dominant vein mineralisation from Orient

2.1 East Orient

Figure 8 Orient Project Geology Plan

The Orient mineralisation (West and East Orient) demonstrates many features of epithermal deposits including: (a) major and subsidiary branching vein formations and possible stockworks, (b) hosted by a complex volcanic and shallow intrusive sequence, (c) vein mineralogy includes sulpho-salts, arsenic and precious metals, plus the typical epithermal indicator elements (Hg, Te, Sb, As and Ba), and (d) alteration styles include advanced argillic (at East Orient), plus widespread sericitic, propylitic and ferruginous alteration.

ompleted four drill holes into the East Orient area (EO2 – EO5) for a total of 410.7m drilled. All holes ed alteration styles indicative of a large-scale mineralising system, with holes EO3 and EO4 ing several lead-zinc-silver-indium vein structures, plus EO3 intersected a wide zone (34.0m) of low ver mineralisation (68 g/t Ag) from 20.0m down hole.


	8080000
0 SJ	00066208
	GNMC co intersecte intersecti grade silv
	Table 9 GN
(\bigcirc)	DDH No
Пп	EO3
	and
	EO3

NMC Drilling East Orient

DDH No	From (m)	To (m)	Intersection (m)	Pb %	Zn %	Ag g/t	In g/t	
EO3	36.0	40.0	4.00	2.0	3.3	154	20	
and	44.0	51.0	7.00	1.4	1.3	68	10	
EO3	20.0	54.0	34.0	na	na	68	na	
EO4	65.0	68.0	3.0	3.8	9.7	146	na	
Reference: Great Northern Mining Corporation (1987)								
na: assay results not available								

Figure 9 Historical workings at East Orient

3 Next Steps

Red River continues to collate and model the historical data for both Isabel and Orient Projects. Red River has undertaken an initial site visit to the Isabel and Orient Projects and has commenced exploration activity.

References

Great Northern Mining Corporation NL (1989) Pre-Feasibility Mining Report West Orient Silver-Lead-Zinc Project

Isley, D. (1982) Lady Isabel Extended ML 6647, Herberton, NQ Summary Report. Prepared for Mareeba Mining and Exploration Pty Ltd.

Walter, A.C. (1987) Orient Camp Geology and Mineralisation. Prepared for Great Northern Mining Corporation NL

Willsteed, T.V., Mullins, W.J. and Brown A.A. (1972) Evaluation of the Isabel Leases, North Queensland for Mareeba Mining and Exploration Pty Ltd by Watts, Griffis and McOuat (WGM) (Australia) Pty Ltd. Prepared for Mareeba Mining and Exploration Pty Ltd.

Werner, T.T. (2017) Indium and the Future of Critical Metals in Australia

Competent Persons Statement

Isabel and West Orient Projects

The information in this release that relates to the Isabel and West Orient Projects is an accurate representation (including the information provided pursuant to ASX Listing Rules 5.12.2 to 5.12.7 (inclusive)) of the available data based on information reviewed by Mr Peter Carolan, who is a Member of The Australasian Institute of Mining and Metallurgy and a full time employee of Red River Resources Ltd.

Mr Carolan has sufficient experience in the style of mineralisation and types of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Carolan consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Steven Harper who is a member of The Australasian Institute of Mining and Metallurgy, and a full time employee of Red River Resources Ltd., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Harper consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

About Red River Resources (ASX: RVR)

RVR is seeking to build a multi-asset operating business focused on base and precious metals with the objective of delivering prosperity through lean and clever resource development.

RVR's foundation asset is the Thalanga Base Metal Operation in Northern Queensland, which was acquired in 2014 and where RVR commenced copper, lead and zinc concentrate production in September 2017.

RVR has recently acquired the high-grade Hillgrove Gold-Antimony Project in New South Wales, which will enable RVR to build a multi-asset operating business focused on base and precious metals.

On behalf of the Board,

Mel Palancian Managing Director Red River Resources Limited

For further information please visit Red River's website or contact:

Mel Palancian Managing Director <u>mpalancian@redriverresources.com.au</u> D: +61 3 9017 5380 Nathan Ryan NWR Communications <u>nathan.ryan@nwrcommunications.com.au</u> M: +61 420 582 887

Under ASX Listing Rule 5.12 (LR 5.12), an entity reporting historical or foreign estimates of mineralisation in relation to a material mining project must include all of the information shown in LR5.12. Red River Resources considers the Isabel Project to be a material mining project and as such provides the following information regarding the Isabel Project in accordance with LR 5.12:

Isabel Project

LR5.2.1 The source and date of the historical estimates or foreign estimates

The source of the foreign resource estimate is a study titled "Evaluation of the Isabel Leases, North Queensland for Mareeba Mining and Exploration Pty Ltd" by Watts, Griffis and McOuat (WGM) (Australia) Pty Ltd dated June 22, 1972.

This report is publicly available through the Queensland Government QDEX Reports website. Refer to Report Number 14293 Component 2 (CR_14293_2).

https://www.business.qld.gov.au/industries/mining-energy-water/resources/minerals-coal/onlineservices/qdex-reports

LR5.2.2 Whether the historical estimates or foreign estimates of mineralisation use categories of mineralisation other than those defined in JORC Code 2012 and if so, an explanation of the differences

The historical resource estimate categorises the mineralisation at Isabel as an 'indicated ore reserve'. This estimate was calculated prior to the introduction of the JORC Code and had not been classified as per the JORC Code 2012.

WGM used a polygonal calculation methodology to calculate the historical estimate. The sections containing all holes drilled by GNMC and Mareeba Mining were drawn and plotted. The zones of mineralisation on each section were divided into blocks, the boundaries of individual blocks normally being drawn halfway between mineralised intersections in adjoining drill holes.

The areas of individual ore blocks were then established by planimetering and volumes calculated by extending the area of influence halfway to the section on each side.

Total tonnage of ore in the deposit was calculated by applying a conservative tonnage factor of 12.5 cubic feet per ton (equivalent Specific Gravity of 2.87). Average grades were calculated on a block by block basis utilising assay data provided by Mareeba Mining.

LR5.12.3 The relevance and materiality of the historical estimates or foreign estimates of mineralisation to the entity

Red River believes that the foreign resource estimate is both relevant and material as it demonstrates there is a historic high grade polymetallic massive sulphide resource at Isabel.

Red River believes, that based on the historic information, that the Isabel deposit has the potential to be mined and trucked to Red River's Thalanga Operation to be processed to produce saleable lead and zinc concentrates containing high levels of indium and silver.

LR5.12.4 The reliability of the historical estimates or foreign estimates of mineralisation, including reference to any criteria in Table 1 of JORC Code 2012 which are relevant to understanding of the reliability of the foreign resource estimates of mineralisation

The historical study was completed by the Canadian geological and mining consultants Watts, Griffis and McOuat (WGM - <u>http://wgm.ca/en/about-wgm/</u>)

WGM undertook an independent calculation of the Isabel historical estimate. It is the opinion of Red River Resources that these estimates are reliable and represent the results of work done to reasonable standards, using quality sampling, testing and geological interpretation. The resource estimate and sampling represented standard industry practice at the time.

LR5.12.5 To the extent known, a summary of the work programs on which the historical estimates or foreign estimates of mineralisation are based and a summary of the key assumptions, mining and processing parameters and methods used to prepare foreign resource estimates of mineralisation.

Several programs of underground sampling and drilling have been completed at the Isabel deposit. Preliminary metallurgical test work was also carried out by AMDEL in 1972 on selected drill core from the Isabel deposit.

Underground Sampling

As part of their investigations of the Isabel lease group for Great Northern Mining Corporation N.L. in 1969-1970, Hall, Ralph and Associates (consulting geologists) sampled the underground workings. A 30-foot vertical shaft was dewatered exposing a 15 foot drive. Hall, Ralph and Associates reportedly sampled the face, walls, floor and roof of this drive. The results of this work are summarised in the following table:

Sample Location	Interval (feet)	Cu (%)	Pb (%)	Zn (%)	Ag (oz/ton)	Ag (g/t)	ln (oz/ton)	In (g/t)
Roof	3	0.26	0.04	15.2	0.7	21.8	-	
Floor	5	0.92	7.4	20.0	10.4	323.5	-	
Face	6	0.53	0.30	25.4	1.3	40.4	25	777.6
East Wall*	15	0.44	0.90	20.4	1.8	56.0	-	
West Wall*	15	0.41	2.68	21.3	2.9	90.2	-	
*averaged					•			

Table 10 Lady Isabel UG sampling results

Extensions of this zone of mineralisation were encountered in the drilling program and comprise part of the historical resource estimate.

Drilling

The following drilling programs were completed at Lady Isabel (1970-1972). Information from these drilling programs were used by WGM to generate the historical estimate. Resultant drill intersections and underground sampling occurred at an approximate spacing of 15m through the historic resource areas.

Table 11 Lady Isabel Drilling Programs

)	Company	Date	Program
	Great Northern Mining Corporation	Second half 1970	36 percussion and diamond drill holes
	Mareeba Mining & Exploration Pty Ltd	September 1971 – May 1972	5 percussion holes and 16 diamond drill holes

Metallurgical Test work

AMDEL carried out preliminary metallurgical test work on core samples from the Isabel deposit in June 1972. The AMDEL report was included as Appendix 3 of the Watts, Griffis and McOuat (Australia) Pty Ltd (1972) report. The conclusions of the AMDEL report are as follows:

The Isabel zinc ore, as represented by the DM1 bulk composite tested, is a coarse-grained lead (minor)–zinc (major) ore containing significant quantities of copper, tin, indium, cadmium and silver. The copper mineralisation, both chalcopyrite and stannite, occurs predominately as fine-grained inclusions (generally less than 25 microns) in the coarse grained marmatite making selective separation of the copper and sulphide tin extremely difficult. Similarly, tin, present as both stannite and cassiterite, is intimately associated with the marmatite. Indium and cadmium appear from metallurgical inferences to be closely associated with the zinc.

Selective flotation of the DM1 bulk composite to produce separate lead and zinc concentrates without considering the selective separation of copper from zinc, poses no serious metallurgical problem. Test results were as follows (selective flotation to produce lead and zinc concentrates):

Table 12 Recovery to Lead Concentrate & Lead Concentrate Grade

	Cu %	Pb %	Zn %	Sn %	In %	Ag %	Cd %	As %
Recovery to Lead Concentrate	11%	75%	2%	4%	3.4%	34%	2%	2%
	Cu %	Pb %	Zn %	Sn %	In (g/t)	Ag (g/t)	Cd %	As %
Lead Concentrate Grade	3%	60%	6%	1%	700	2,600	0.0%	0.8%

Table 13 Recovery to Zinc Concentrate & Zinc Concentrate Grade

	Cu %	Pb %	Zn %	Sn %	In %	Ag %	Cd %	As %
Recovery to Zinc Concentrate	51%	17%	85%	29%	74.5%	43%	86%	na
	Cu %	Pb %	Zn %	Sn %	In (g/t)	Ag (g/t)	Cd %	As %
Zinc Concentrate Grade	2.5%	2.2%	50%	1.6%	2,550	440	0.3%	0.5%

AMDEL also undertook test work to review the potential to produce a bulk Cu-Pb concentrate and a zinc concentrate. Test results were as follows (selective flotation to produce a bulk copper-lead and zinc concentrates):

Table 14 Recovery to Bulk Copper-Lead Concentrate & Bulk Copper-Lead Concentrate Grade

	Cu %	Pb %	Zn %	Sn %	In %	Ag %	Cd %	As %
Recovery to Bulk Cu-Pb Concentrate	40%	75%	6%	13%	11%	43%	nr	nr
	Cu %	Pb %	Zn %	Sn %	In (g/t)	Ag (g/t)	Cd %	As %
Bulk Copper-Lead Concentrate Grade	8%	45%	15%	2%	1,530	1,870	nr	nr

nr: not reported

LR5.12.6 Any more recent estimates or data relevant to the reported mineralisation available to the entity No further estimates or data relevant to the resource estimation are available.

LR5.12.7 The evaluation and/or exploration work that needs to be completed to verify the historical estimates or foreign estimates of mineralisation as mineral resources or reserves in accordance with JORC Code 2012

A review of historical drilling information is ongoing to ensure the integrity of available data. Red River has commenced a search of archives to capture as much of the historical data as possible and to confirm if any physical samples remain from the drilling programs. Based on the age of the historical drilling information, and the lack of recorded metadata and QA/QC (Quality Assurance/Quality Control) data it is most likely that a systematic drill program will be required prior to any update of the historic estimate to a Mineral Resource.

LR5.12.8 The proposed timing of any evaluation and/or exploration work that the entity intends to undertake and a comment on how the entity intends to fund that work

Red River has commenced a review and evaluation based on electronically available historical data. Once this is complete, Red River intends to undertake a series of site visits and commence exploration activity (sampling, mapping, geophysical exploration and drilling).

Red River will fund evaluation and/or exploration work from current (internal) financial resources.

LR5.12.9 A cautionary statement proximate to, and equal prominence as, the reported historical estimates or foreign estimates of mineralisation

Refer to the cautionary statement in this announcement and proximate to the foreign resource estimates of mineralisation reported in the highlights in this announcement.

LR5.12.10 A statement by a named competent person or persons that the information in the market announcement provided under LR 5.12 to 5.12.7 is an accurate representation of the available data.

Refer to the competent persons statement contained in this announcement

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg	The sampling at Isabel and Isabel Extended, is reported to
techniques	cut channels, random chips, or	have been undertaken using surface diamond, reverse
	specific specialised industry	circulation (RC) and percussion drilling methods and
	standard measurement tools	underground channel and chip sampling methods.
	appropriate to the minerals under	
	investigation, such as down hole	At Isabel individual underground channel samples of lengths
	gamma sondes, or handheld XRF	up to 3 feet were taken. Channel and chip sample results are
	instruments, etc). These examples	reported as composite results.
	should not be taken as limiting the	
	broad meaning of sampling.	At Isabel 36 percussion and diamond drilling holes carried out
	Include reference to measures taken	by GNMC in 1970. In 1972, 5 percussion (air-trac) and 16
	to ensure sample retrospectivity and	diamond holes were carried out by MME. By the time of the
	the appropriate calibration of any	report from which this information is reported a second
	measurement tools or systems used.	percussion program was ongoing from which no data is
	Aspects of the determination of	available. Percussion drilling rarely reached depths greater
	mineralisation that are Material to	than 15 m. Diamond drilling extends to 120m below surface.
	the Public Report.	
	In cases where 'industry standard'	Due to the variable nature of sample lengths it appears that
	work has been done this would be	sampling to geological boundaries was undertaken at all
	relatively simple (eg 'reverse	projects.
	circulation drilling was used to	
	obtain 1 m samples from which 3 kg	There is no further information about sampling techniques
	was pulverised to produce a 30 g	for drilling at Isabel and Isabel Extended
	charge for fire assay'). In other	
	cases, more explanation may be	
	required, such as where there is	
	coarse gold that has inherent	
	sampling problems. Unusual	
	commodities or mineralisation types	
	(eg submarine nodules) may warrant	
	disclosure of detailed information.	
Drilling	Drill type (eg core, reverse	Isabel: Drilling was completed as a mixture of diamond holes
techniques	circulation, open-hole hammer,	and percussion holes.
	rotary air blast, auger, Bangka, sonic,	
	etc) and details (eg core diameter,	Isabel Extended: Drilling was completed as a mixture of
	triple or standard tube, depth of	reverse circulation pre-collars with diamond tails, reverse
	diamond tails, face-sampling bit or	circulation holes and diamond holes.
	other type, whether core is oriented	
	and if so, by what method, etc).	

Criteria	JORC Code explanation	Commentary	Y			
		Hole ID	RC metres	Diamond metres	Total Depth	Diamete
		MIED1		201.2	201.2	NQ2
		MIED2		30	30	NQ2
		MIED3		240	240	NQ2
		MIED4		137.11	137.11	
		MIED5		179.96	179.96	
)		MIED7		184.13	184.13	
		LIE1	18		198.4	
		LIE2	17	133.4	150.4	
		LIE3	18		150.3	
		LIE4	33.25			NQ2
		LIE5	12			NQ2
		LIEG	12	132.4	150.4	
		LIE7	17.9	132.4		NQ2
		LIE8	3.6	200.8	201	
		LIE9	18	128.7	146.7	
				128.7		
		LIE10	18	150.4	148.4	NQZ
Logging	results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Although dia sample collectis is available to deposit. There are not Isabel. Geological lo LIE1 to LIE10 recorded the Major an Alteratio Minerali Deforma Joint, be	mond drilli ction to lim o quantify to o records of and MIED e following: nd minor lit on type and isation style ation intens	hologies includii l intensity e, intensity and r	ppropriate n o further inf mpling for th otechnical la available for was qualita ng grainsize najor minera	nethod f ormatio ne Isabel ogs from r holes tive and and colo als
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	There is no d		sub-sampling teo	-	-

IOPC C

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted	
	for all sub-sampling stages to	
	maximise representivity of samples.	
	Measures taken to ensure that the	
	sampling is representative of the in-	
	situ material collected, including for	
	instance results for field	
D	duplicate/second-half sampling.	
	Whether sample sizes are	
	appropriate to the grain size of the	
	material being sampled.	
Quality of	The nature, quality and	There are no records of assay and laboratory procedures for
assay data	appropriateness of the assaying and	Isabel or Isabel Extended.
and	laboratory procedures used and	isaber of isaber extended.
laboratory	whether the technique is considered	
tests	partial or total.	
10313	For geophysical tools,	
	spectrometers, handheld XRF	
	instruments, etc, the parameters	
	used in determining the analysis	
	including instrument make and	
	model, reading times, calibrations	
	factors applied and their derivation,	
	etc.	
	Nature of quality control procedures	
	adopted (eg standards, blanks,	
	duplicates, external laboratory	
	checks) and whether acceptable	
	levels of accuracy (ie lack of bias)	
	and precision have been established.	
Verification	The verification of significant	There are no records of the raw data for any projects.
of sampling	intersections by either independent	Available assay results are in the form of significant intercept
and	or alternative company personnel.	tables within or attached to annual reports.
assaying	The use of twinned holes.	At Isabel it is reported that the drilling completed by Mareeba
ussuying	Documentation of primary data,	Exploration and Mining Pty. Limited and Great Northern
	data entry procedures, data	Mining Corporation was reviewed by Watts, Griffis and
	verification, data storage (physical	McQuat (Australia) Pty. As part of their appraisal of the Isabel
	and electronic) protocols.	Mine.
	Discuss any adjustment to assay	At Isabel Extended there are more comprehensive assay
	data.	results for selected drill holes but no assay certificates or raw
		data are available.
		At Isabel metallurgical testwork was carried out on a bulk
		composite by Australian Mineral Development Laboratories
		(AMDEL) and at West Orient metallurgical testwork was
		carried out on a drill core samples by Robertson Research.
		The reported composition of the metallurgical samples
		provides a form of secondary laboratory checking.
		provides a form of secondary laboratory effecting.
Location of	Accuracy and quality of surveys used	All work was completed in local grids.
data points	to locate drill holes (collar and	The location of drill holes at all projects are displayed on
	down-hole surveys), trenches, mine	maps in local grids. No reports yet obtained contain the
	workings and other locations used in	conversion to standard grids.

Mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
	Specification of the grid system	
	used.	
	Quality and adequacy of topographic	
-	control.	
Data	Data spacing for reporting of	At Isabel, underground wall and roof sampling and drill
spacing and	Exploration Results.	sample intersections achieved a spacings of approximately
distribution	Whether the data spacing and	15-30 m (50-100 feet) in the areas where historic resources
	distribution is sufficient to establish	were reported.
	the degree of geological and grade	
	continuity appropriate for the	
	Mineral Resource and Ore Reserve	
	estimation procedure(s) and	
	classifications applied.	
	Whether sample compositing has	
	been applied.	
Orientation	Whether the orientation of sampling	At Isabel, generally vertical drilling intersected the
of data in	achieves unbiased sampling of	approximately flat lying lenses of mineralisation.
relation to	possible structures and the extent to	As tools of External of some time in a final tool to a final to a final tool of the state of the source to a st
geological	which this is known, considering the	At Isabel Extended, vertical, and inclined to the west and
structure	deposit type.	south west drilling occurs. Drill holes MIED1 and MEID3
	If the relationship between the	which intersected mineralisation were vertical.
	drilling orientation and the	
	orientation of key mineralised structures is considered to have	
	introduced a sampling bias, this	
	should be assessed and reported if	
	material.	
Sample	The measures taken to ensure	No information is available.
security	sample security.	
Audits or	The results of any audits or reviews	No audits or reviews have been completed
reviews	of sampling techniques and data.	
IEVIEWS	or sampling techniques and uata.	

Under ASX Listing Rule 5.12 (LR 5.12), an entity reporting historical or foreign estimates of mineralisation in relation to a material mining project must include all of the information shown in LR5.12. Red River Resources considers the West Orient Project to be a material mining project and as such provides the following information regarding the West Orient Project in accordance with LR 5.12:

Orient Project

LR5.2.1 The source and date of the historical estimates or foreign estimates

The source of the foreign resource estimate is a study titled "Pre-Feasibility Mining Report West Orient Silver-Lead-Zinc Project" by Great Northern Mining Corporation NL dated January 1989

This report is publicly available through the Queensland Government QDEX Reports website. Refer to Report Number 21971 Part 2 (CR_21971_2).

https://www.business.qld.gov.au/industries/mining-energy-water/resources/minerals-coal/onlineservices/qdex-reports

LR5.2.2 Whether the historical estimates or foreign estimates of mineralisation use categories of mineralisation other than those defined in JORC Code 2012 and if so, an explanation of the differences

The historical resource estimate categorises the mineralisation at West Orient as a 'drill indicated ore reserve'. This estimate was calculated prior to the introduction of the JORC Code and had not been classified as per the JORC Code 2012.

Great Northern Mining Corporation NL (GNMC) used a polygonal calculation methodology to calculate the historical estimate using diamond drilling intersections only and based on a 5% Zn & Pb cut-off grade.

LR5.12.3 The relevance and materiality of the historical estimates or foreign estimates of mineralisation to the entity

Red River believes that the foreign resource estimate is both relevant and material as it demonstrates there is a historic high-grade zinc-lead-silver-indium resource at West Orient.

Red River believes, that based on the historic information, that the West Orient deposit has the potential to be mined and trucked to Red River's Thalanga Operation to be processed to produce saleable base metal concentrates.

LR5.12.4 The reliability of the historical estimates or foreign estimates of mineralisation, including reference to any criteria in Table 1 of JORC Code 2012 which are relevant to understanding of the reliability of the foreign resource estimates of mineralisation

The historical pre-feasibility study was completed by GNMC. It is the opinion of Red River Resources that the estimate is reliable and represents the results of work done to reasonable standards, using quality sampling, testing and geological interpretation. Both the sampling and resource estimation methods represent standard industry practice of the time.

LR5.12.5 To the extent known, a summary of the work programs on which the historical estimates or foreign estimates of mineralisation are based and a summary of the key assumptions, mining and processing parameters and methods used to prepare foreign resource estimates of mineralisation.

Drilling

The GNMC historical estimate is based upon 16 diamond drill holes completed by GNMC, with the most recent drilling (4 diamond drill holes) being completed in 1988. Drilling was completed over a 600m strike with a resultant drill intersection spacing of 50 to 100m achieved through the historic resource areas.

Metallurgical Test work

Robertson Research (1988) completed limited metallurgical test work on drill core from West Orient. Robertson Research carried out test work to produce a gravity concentrate and selective flotation to produce separate zinc and lead concentrates, and also a bulk lead-zinc concentrate. No work was carried out on indium recoveries. GNMC noted that they assumed 70% of the indium would be recovered to the zinc concentrate and the zinc concentrate would have an assumed indium grade of ~1,500 g/t In.

Table 15 Lead & Zinc Concentrate Recovery and Grade

	Pb %	Zn %	Ag %		Pb %	Zn %	Ag g/t
Recovery to Lead Concentrate	90%	-	60%	Lead Concentrate Grade	48%	-	2,017
Recovery to Zinc Concentrate	-	85%	10%	Zinc Concentrate Grade	-	47%	199

LR5.12.6 Any more recent estimates or data relevant to the reported mineralisation available to the entity No further estimates or data relevant to the resource estimation are available.

LR5.12.7 The evaluation and/or exploration work that needs to be completed to verify the historical estimates or foreign estimates of mineralisation as mineral resources or reserves in accordance with JORC Code 2012

A review of historical drilling information is ongoing to ensure the integrity of available data. Red River has commenced a search of archives to capture as much of the historical data as possible and to confirm if any physical samples remain from the drilling programs. Based on the age of the historical drilling information, and the lack of recorded metadata and QA/QC (Quality Assurance/Quality Control) data it is most likely that a systematic drill program will be required prior to any update of the historic estimate to a Mineral Resource.

LR5.12.8 The proposed timing of any evaluation and/or exploration work that the entity intends to undertake and a comment on how the entity intends to fund that work

Red River has commenced a review and evaluation based on electronically available historical data. Once this is complete, Red River intends to undertake a series of site visits and commence exploration activity (sampling, mapping, geophysical exploration and drilling).

Red River will fund evaluation and/or exploration work from current (internal) financial resources.

LR5.12.9 A cautionary statement proximate to, and equal prominence as, the reported historical estimates or foreign estimates of mineralisation

Refer to the cautionary statement in this announcement and proximate to the foreign resource estimates of mineralisation reported in the highlights in this announcement.

LR5.12.10 A statement by a named competent person or persons that the information in the market announcement provided under LR 5.12 to 5.12.7 is an accurate representation of the available data.

Refer to the competent persons statement contained in this announcement

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of	The sampling at Orient East and Orient West is reported to have been
techniques	sampling (eg cut channels,	undertaken using surface diamond, reverse circulation (RC) and percussion
	random chips, or specific	drilling methods.
)	specialised industry	
	standard measurement	Due to the variable nature of sample lengths it appears that sampling to
	tools appropriate to the	geological boundaries was undertaken at all projects.
	minerals under	
	investigation, such as down	There is no further information about sampling techniques for drilling at
	hole gamma sondes, or	Orient East.
	handheld XRF instruments,	
	etc). These examples	For Orient West holes WO10 to WO12 it is reported that diamond core was
	should not be taken as	split and crushed for analysis by A.A.S. in the local laboratory of General
	limiting the broad meaning	Superintendence Co. and by North Queensland Analytical Services of
	of sampling.	Mareeba (N.Q.A). Upon checking drill core and assays from N.Q.A., lower
	Include reference to	than realistic assays were noted and check assays were completed where
	measures taken to ensure	possible.
	sample retrospectivity and	
	the appropriate calibration	
	of any measurement tools	
	or systems used.	
	Aspects of the	
	determination of	
	mineralisation that are	
	Material to the Public	
	Report.	
	In cases where 'industry	
	standard' work has been	
	done this would be	
	relatively simple (eg	
	'reverse circulation drilling	
	was used to obtain 1 m	
	samples from which 3 kg	
	was pulverised to produce a	
	30 g charge for fire assay').	
	In other cases, more explanation may be	
	required, such as where	
1	there is coarse gold that	
	has inherent sampling	
	problems. Unusual	
	commodities or	
	mineralisation types (eg	
	submarine nodules) may	
	warrant disclosure of	
	detailed information.	
Drilling	Drill type (eg core, reverse	Orient West
techniques	circulation, open-hole	The diameter of all drill holes at Orient West is unknown. WO1-WO11 are
techniques	hammer, rotary air blast,	diamond drill holes. It is unknown if they were pre collared RC.
	auger, Bangka, sonic, etc)	alamona ann noles. It is anknown ir they were pre collarea KC.
	and details (eg core diameter, triple or standard	
	-	
	tube, depth of diamond	

use only

Criteria	JORC Code explanation	Commenta	ry				
	tails, face-sampling bit or	Hole ID	-	Diamond metres	Total Depth	Diameter	
	other type, whether core is	WO13	30	173		Unknown	
	oriented and if so, by what	W014	60	33		Unknown	
	method, etc).	W015	87	42.75		Unknown	
	,	W016	24	38.8		Unknown	
		Orient East					
1		Hole ID	RC metres	Diamond metres	Total Depth	Diameter	
		EO2	21	66.2		Unknown	
		EO3	90	00.2		Unknown	
		EO4	101	51.5		Unknown	
		EO5	81	51.5		Unknown	
Drill cample	Mothod of recording and	L		f core recoverie		onknown	
Drill sample	Method of recording and					oothod for	comple
recovery	assessing core and chip	-		ling is the most			-
	sample recoveries and			ble bias no furth			ble to quan
	results assessed.	the quality	or sampling	for the Orient	west deposit.		
	Measures taken to						
	maximise sample recovery						
	and ensure representative						
	nature of the samples.						
	Whether a relationship						
	exists between sample						
	recovery and grade and						
	whether sample bias may						
	have occurred due to						
	preferential loss/gain of						
	fine/coarse material.						
Logging	Whether core and chip	There are n	o records o	f geological or a	geotechnical lo	ogs from O	rient West
	samples have been	Orient East					
	geologically and						
	geotechnically logged to a						
	level of detail to support						
	appropriate Mineral						
	Resource estimation,						
	mining studies and						
	metallurgical studies.						
	Whether logging is						
	qualitative or quantitative						
	in nature. Core (or costean,						
	channel, etc) photography.						
	The total length and						
	percentage of the relevant						
	intersections logged.						
Sub-	If core, whether cut or	There is no	data about	sub-sampling t	echniques and	d sample p	reparation
sampling	sawn and whether quarter,	drilling at O			-		
techniques	half or all core taken.						
and sample	If non-core, whether riffled,	The only inf	ormation f	or Orient West	is for holes W	010 to WC	12 for whi
preparation	tube sampled, rotary split,	the diamon				_	
	etc and whether sampled						
	wet or dry.						
	For all sample types, the						
	nature, quality and						
	appropriateness of the						
	sample preparation						
	technique.						

	Criteria	JORC Code explanation	Commentary
	ententa	Quality control procedures	Conniciliary
		adopted for all sub-	
		sampling stages to	
		maximise representivity of	
		samples.	
		Measures taken to ensure	
\geq	0	that the sampling is	
· · ·		representative of the in-situ	
		material collected,	
		including for instance	
		results for field	
\mathcal{D}		duplicate/second-half	
\mathcal{I}		sampling.	
		Whether sample sizes are	
70		appropriate to the grain size of the material being	
$ \rangle$			
ビ	Quality of	sampled. The nature, quality and	There are no records of
2	assay data	appropriateness of the	
12	and	assaying and laboratory	At West Orient holes W
2	laboratory	procedures used and	crushed for analysis by
_))	tests	whether the technique is	Superintendence Co. an
		considered partial or total.	Mareeba (N.Q.A). Upon
		For geophysical tools,	than realistic assays we
		spectrometers, handheld	completed where possi
R		XRF instruments, etc, the	
\cup		parameters used in	There are no records of
		determining the analysis	WO16.
		including instrument make	
		and model, reading times,	
)		calibrations factors applied	
ノ		and their derivation, etc.	
5		Nature of quality control	
())		procedures adopted (eg	
		standards, blanks,	
		duplicates, external	
15		laboratory checks) and	
\cup		whether acceptable levels of accuracy (ie lack of bias)	
\leq		and precision have been	
))		established.	
	Verification	The verification of	There are no records of
	of sampling	significant intersections by	are in the form of signif
	and	either independent or	reports.
	assaying	alternative company	- II
	,	personnel.	
\mathcal{I}		The use of twinned holes.	
7		Documentation of primary	
		data, data entry	
		procedures, data	
		verification, data storage	
		(physical and electronic)	
	1		

iteria	JORC Code explanation	Commentary
uality of ssay data	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the	There are no records of assay and laboratory procedures for Orient East.
nd boratory sts	assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	At West Orient holes WO10 to WO12 the diamond core was split and crushed for analysis by A.A.S. in the local laboratory of General Superintendence Co. and by North Queensland Analytical Services of Mareeba (N.Q.A). Upon checking drill core and assays from N.Q.A., lower than realistic assays were noted and check assays completed were completed where possible. There are no records of assay and laboratory procedures for holes WO5- WO16.
erification sampling nd ssaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	There are no records of the raw data for any projects. Available assay results are in the form of significant intercept tables within or attached to annual reports.

Critoria	IOPC Code explanation	Commontory
Criteria	JORC Code explanation	Commentary
Location of	Accuracy and quality of	All work was completed in local grids.
data points	surveys used to locate drill	The location of drill holes at all projects are displayed on maps in local grids.
	holes (collar and down-hole	No reports yet obtained contain the conversion to standard grids.
	surveys), trenches, mine	
	workings and other	
	locations used in Mineral	
Ď	Resource estimation.	
T	Specification of the grid	
	system used.	
	Quality and adequacy of	
	topographic control.	
Data	Data spacing for reporting	At West Orient, underground wall and roof sampling and drill sample
spacing and	of Exploration Results.	intersections achieved a spacings of approximately 50-100 m in the areas
distribution	Whether the data spacing	where historic resources were reported. The drilling covers an approximate
	and distribution is sufficient	strike length of 600m.
	to establish the degree of	
	geological and grade	
	continuity appropriate for	
	the Mineral Resource and	
	Ore Reserve estimation	
	procedure(s) and	
	classifications applied.	
	Whether sample	
	compositing has been	
	applied.	
Orientation	Whether the orientation of	At Orient Wast the drilling is appropriately inclined (Γ 0°) to the parth past
		At Orient West, the drilling is appropriately inclined (50°) to the north east intersection the south west inclined mineralisation veins.
of data in	sampling achieves unbiased	
relation to	sampling of possible	At Original Fact, holes FO2 and FO4 are inclined to the north increased with are
geological	structures and the extent to	At Orient East, holes EO3 and EO4 are inclined to the north, presently there
structure	which this is known,	is insufficient detail to determine the relationship between drill orientation
	considering the deposit	and mineralisation.
	type.	
	If the relationship between	
	the drilling orientation and	
	the orientation of key	
	mineralised structures is	
	considered to have	
	introduced a sampling bias,	
	this should be assessed and	
	reported if material.	
Sample	The measures taken to	No information is available.
security	ensure sample security.	
Audits or	The results of any audits or	No audits or reviews have been completed
reviews	reviews of sampling	
	techniques and data.	