

Red River hits visible gold in drilling at Hillgrove

Highlights:

- Red River's Eleanora drill program at Hillgrove Gold Project progressing well gold assays received from drill holes ELG136, ELG137 & ELG138 with broad intervals of mineralisation intersected:
 - ELG136 intersected 16.6m @ 2.1 g/t Au from 41.4m down hole including 4.0m @ 4.0 g/t Au from 51.0m downhole
 - ELG138 intersected 8.6m @ 3.2 g/t Au from 62.4m down hole including 3.7m @ 4.6 g/t Au from 63.7m downhole
- Drill holes ELG139, ELG140 and ELG141 completed and dispatched for assay
- ELG141 intersected 0.70m of intensely mineralised quartz/siltstone breccia containing coarse grained visible gold, blebby stibnite & disseminated arsenopyrite from 144.85m downhole
- On Eleanora program completion (ELG142, ELG143 & ELG144 to be drilled), the drill rig will move to test Curry's Lode.

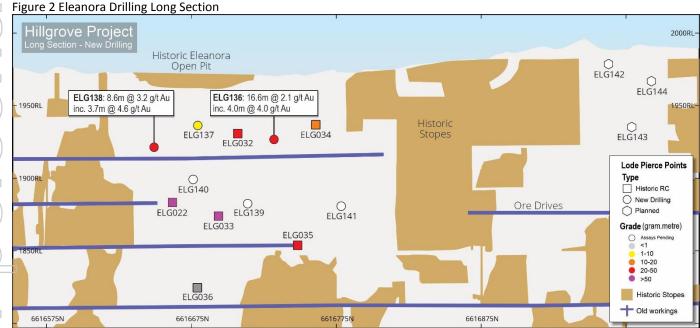
Red River Resources Limited (ASX: RVR) is pleased to announce encouraging early results from its maiden diamond drilling program targeting the Eleanora Garibaldi Lode at its Hillgrove Gold Project in NSW, Australia.

Red River plans to restart gold production from the Bakers Creek stockpile at Hillgrove by late CY2020 before resuming underground operations in CY2021.

Figure 1 ELG141 coarse grained visible gold (circled) (144.85m to 145.55m downhole)

Address: Level 6, 350 Collins Street, Melbourne, VIC, 3000, Australia T: +61 3 9017 5380 F: +61 3 9670 5942 E: info@redriverresources.com.au www.redriverresources.com.au

Red River has received gold assays for drill holes ELG136, ELG137 and ELG138. Other assays including antimony are still outstanding as laboratory turnaround times have increased. Drill holes ELG139, ELG140 and ELG141 have been completed and dispatched for assay. Drill holes ELG142, ELG143 and ELG144 remain to be drilled. On completion of this initial nine-hole program (expected in 8-10 days), the drill rig will commence drilling Curry's Lode targets.


Initial drilling at Eleanora has confirmed the presence of the high-grade gold-antimony Eleanora vein system and adjacent halos of low to medium-grade gold mineralisation.

Two of the three drilled and assayed holes, ELG136 and ELG 138, have intersected high-grade gold mineralisation:

- ELG136 returned 16.6m @ 2.1 g/t Au from 41.4m down hole including 4.0m @ 4.0 g/t Au from 51.0m downhole; and
- ELG138 returned 8.6m @ 3.2 g/t Au from 62.4m down hole including 3.7m @ 4.6 g/t Au from 63.7m downhole.

Drill hole ELG141 intersected 0.70m of intensely mineralised quartz/siltstone breccia containing coarse grained visible gold, blebby stibnite & disseminated arsenopyrite from 144.85m downhole.

Two large panels of the Eleanora lode were not mined historically, refer to Figure 2. These areas represent potential mining fronts close to surface and the existing Hillgrove processing plant. The recent drilling has confirmed the potential to mine these remnant panels to gain access to the deeper Eleanora resources which will be converted from JORC 2004 to JORC 2012 status.

Table 1 Material drill hole assay summary (current drilling), Hillgrove Gold Project

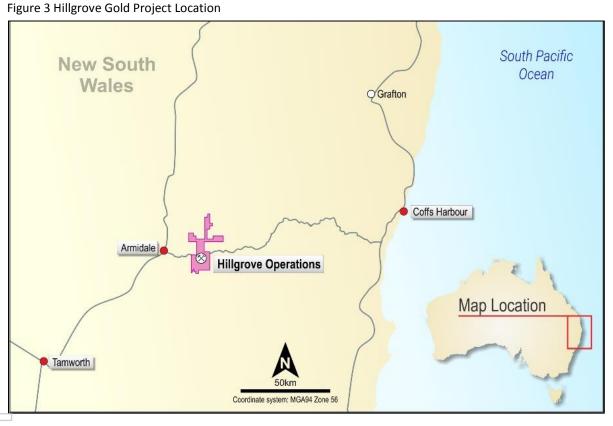
Hole ID	From (m)	To (m)	Down Hole Intersection (m)	True Width Estimate (m)	Au (g/t)	Sb (%)
ELG136	41.40	58.00	16.60	10.50	2.1	*
inc.	51.00	55.00	4.00	2.50	4.0	*
ELG137	42.00	50.00	8.00	5.50	1.2	*
ELG138	62.40	71.00	8.60	5.90	2.2	*
inc.	63.70	67.40	3.70	2.60	4.6	*
*Antimony	(Sb) assay res	ults are yet	to be received			

Table 2 Material RC drill hole assay summary (historic drilling), Hillgrove Gold Project

Hole ID	From	То	Down Hole Intersection	True Width Estimate	Au	Sb
	(m)	(m)	(m)	(m)	(g/t)	(%)
ELG022	105.00	116.00	11.00	6.4	5.3	0.3
inc.	111.00	116.00	5.00	2.9	7.4	0.2
ELG032	38.00	53.00	15.00	8.9	2.6	0.2
ELG033	84.00	96.00	12.00	3.2	5.0	0.3
inc.	85.00	91.00	6.00	1.8	8.2	0.3
ELG034	42.00	47.00	5.00	1.9	3.6	0.0
ELG035	86.00	94.00	8.00	1.0	4.4	0.5
and	118.00	131.00	13.00	1.7	2.1	0.1

Table 3 Eleanora drill hole geological information summary, Hillgrove Gold Project

Hole ID	From	То	Geological Description	Status
ELG139	123.6	124.4	Healed shear zone with intense stibnite and arsenopyrite mineralisation disseminated throughout.	Assays pending
ELG139	124.4	136.5	Moderately silica altered siltstone with a minor amount of stringer quartz veins throughout. Trace arsenopyrite selvages around these veins.	Assays pending
ELG139	136.5	136.9	Intense quartz/siltstone breccia with a moderate amount of disseminated arsenopyrite associated.	Assays pending
ELG140	92.0	98.0	Moderately silica altered siltstone with several small zones of lamprophyre dyke. The zone has a minor amount of stockwork quartz veins throughout. Trace arsenopyrite selvages around these veins.	Assays pending
ELG141	143.80	144.25	Intense quartz/siltstone breccia containing blebby stibnite and disseminated arsenopyrite throughout.	Assays pending
ELG141	144.25	144.85	Lamprophyre dyke – unmineralised	Assays pending
ELG141	144.85	145.55	Intense quartz/siltstone breccia containing visible gold, blebby stibnite and disseminated arsenopyrite throughout.	Assays pending


Next Steps

On completion of the current Eleanora drilling program, the drill rig will move to the Curry's Block target, to complete a seven-hole (655m) program to follow up Red River's surface sampling which defined extensive high-grade gold-antimony mineralisation.

The planned Curry's Block drilling will be partially funded by a grant from the NSW Government New Frontiers Cooperative Drilling Grants Program (Round 3).

Hillgrove Gold Project

The Hillgrove Gold Project is located approximately 30km from Armidale in New South Wales. Historic mining activity commenced at the site in 1857 and ceased in 1921 and recommenced in 1969. To date, Hillgrove has produced more than 730,000 ounces of gold (in bullion and concentrates), more than 50,000 tonnes of antimony (as metal and in concentrates) plus material amounts of by-product tungsten (in concentrates).

The Hillgrove site includes a 250ktpa capacity processing plant currently on active care & maintenance comprising a selective flotation circuit (capable of producing antimony-gold and refractory gold concentrates), an antimony leach/SXEW/refining & casting plant, a gold cyanide leach circuit & gold room and a pressure oxidation circuit. The site also has a fully HDPE (high-density polyethylene) lined modern tailing storage facility, which was constructed in 2006, and has approximately two years of production storage capacity.

Figure 4 Hillgrove Gold Project

The Hillgrove Gold Project has a material high-grade JORC 2012 Compliant Mineral Resource of 5.0Mt @ 4.3 g/t Au & 1.5% Sb (6.4 g/t Au Eq.) (686koz gold & 74kt antimony), in addition to a material high-grade JORC 2004 Compliant Mineral Resource (refer to ASX release "Red River acquires Hillgrove Gold-Antimony Project in NSW" dated 3 July 2019 for further details).

Red River has undertaken a detailed review in preparation for the restart of the Hillgrove Gold Project. The outcome of the review was a lean capital efficient staged restart process, with Stage One (processing of Bakers Creek Stockpile) scheduled to commence at the end of CY2020, and Stage Two (full restart of UG mining operations) scheduled to commence at the end of CY2021.

Red River has announced a Mineral Resource of 225kt @ 2.5 g/t Au (18koz Au contained) for the Bakers Creek Stockpile. Metallurgical test work completed indicated a total gold recovery of ~80% to gold doré when gold is recovered to a gravity gold concentrate and a flotation gold concentrate which will be leached on site to produce gold doré.

Red River will utilise the extensive existing site infrastructure and equipment to deliver a low capital cost restart, with an estimated Stage One capital cost of less than \$5m.

Table 4 Hillgrove Gold Project Mineral Resource

Hilgrove Gold Project Mineral Resource Deposit Classification Tonnage (kt) Au (g/t) Sb (%) Au Eq. (g/t) Sunlight & Blacklode Total 2,647 4.5 1.1 6.2 Measured 1,136 3.6 0.9 4.9 Total 2,647 4.5 1.1 6.2 Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Indicated 640 4.2 1.8 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 236 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 2.00 3 0.3	Table 4 Hillgrove Gold P	,				
Measured - - - Indicated 1,511 5.3 1.3 7.1 Inferred 1,136 3.6 0.9 4.9 Total 2,647 4.5 1.1 6.2 Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8			1			
Sunlight & Blacklode Indicated 1,511 5.3 1.3 7.1 Inferred 1,136 3.6 0.9 4.9 Total 2,647 4.5 1.1 6.2 Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Indicated 56 4.7 1.7 7.2 Inferred 230 4.6 4.5 11.8 Bakers Creek Stockpile Measured - - - Inferred 225	Deposit		Tonnage (kt)	Au (g/t)	Sb (%)	Au Eq. (g/t)
Sunlight & Blacklode Inferred 1,136 3.6 0.9 4.9 Total 2,647 4.5 1.1 6.2 Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Inferred 225 2.5 <t< td=""><td></td><td>1 million 1 million 1</td><td>-</td><td>-</td><td>-</td><td></td></t<>		1 million 1	-	-	-	
Interred 1,136 3.6 0.9 4.9 Total 2,647 4.5 1.1 6.2 Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 230 4.6 4.5 11.8 Measured - - - - Indicated - - - - <td>Sunlight & Blacklode</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sunlight & Blacklode					
Measured 73 5.1 0.9 6.2 Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Inferred 225 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3						
Brackin's Spur Indicated 640 4.2 1.8 6.9 Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Bakers Creek Stockpile Measured - - - Indicated - - - 2.5 Total 225 2.5 - 2.5 Total 2.53 - 2.5 - Inferred 2.303 4.8 <						
Inferred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Indicated 56 4.7 1.7 7.2 Inferred 230 4.6 4.5 11.8 Measured - - - - Indicated - - - - Indicated 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 2,303 4.8 1.5 7.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Interred 870 4.8 1.3 6.5 Total 1,583 4.6 1.5 6.6 Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Indicated 96 2.1 3.1 7.3 Indicated 96 2.1 3.1 7.3 Indicated 96 2.0 3.8 8.4 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 230 4.6 4.5 11.8 Measured - - - - Inferred 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 2.303 4.8 1.5 7.1 Inferred 2.303 4.8 1.5 7.1 </td <td>Brackin's Spur</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Brackin's Spur					
Measured 170 1.9 4.2 9.0 Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Inferred 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 2.303 4.8 1.5 7.1 Indicated 2.303 4.8 1.5 7.1 Indicated 2.303 4.8 1.5 7.1 Inferred 2.236 4.0 1.0 5.0		-				
Clark's Gully Indicated 96 2.1 3.1 7.3 Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Syndicate Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Indicated 225 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td></td<>			-			-
Clark's Gully Inferred 0 0.8 3.0 5.8 Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Indicated 2.5 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0						
Total 266 2.0 3.8 8.4 Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Indicated - - - - Inferred 225 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4	Clark's Gully					
Measured 170 4.4 5.5 13.4 Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Indicated 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 2,303 4.8 1.5 7.1 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential t		-				-
Syndicate Indicated 56 4.7 1.7 7.2 Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Bakers Creek Stockpile Measured - - - Indicated - - - - Indicated - - - - Indicated 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold. Interval Interval						
Syndicate Inferred 4 9.3 0.3 9.0 Total 230 4.6 4.5 11.8 Measured - - - - Indicated 225 2.5 - 2.5 Total 225 2.5 - 2.5 Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul 4.3 1.5 6.4						
Total 230 4.6 4.5 11.8 Bakers Creek Stockpile Measured - - - - Indicated - - - - - - Indicated - - - - - - Inferred 225 2.5 - 2.5 - 2.5 Total 225 2.5 - 2.5 - 2.5 Measured 413 3.5 4.2 10.3 1.0 1.0 Indicated 2,303 4.8 1.5 7.1 1.1 1.1 Inferred 2,236 4.0 1.0 5.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 1.1 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold. 1.2 1.2 1.2	Syndicate					
Measured -<						
Bakers Creek Stockpile Indicated - <th< td=""><td></td><td></td><td></td><td>4.0</td><td>4.5</td><td></td></th<>				4.0	4.5	
Bakers Creek Stockpile Inferred 225 2.5 - 2.5 Total 225 2.5 - 2.5 Hillgrove Total Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold. Solution Solution				-	-	
Total 225 2.5 - 2.5 Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul nave a reasonable potential to be recovered and sold. 5.0	Bakers Creek Stockpile		- 225	2 5		
Measured 413 3.5 4.2 10.3 Indicated 2,303 4.8 1.5 7.1 Inferred 2,236 4.0 1.0 5.0 Total 4,951 4.3 1.5 6.4 It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold. 5.0		-			-	
Hillgrove TotalIndicated2,3034.81.57.1Inferred2,2364.01.05.0Total4,9514.31.56.4It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold.6.4					4.2	
Hillgrove TotalInferred2,2364.01.05.0Total4,9514.31.56.4It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold.5.0						
Total4,9514.31.56.4It is Red River's opinion that all elements included in the metal equivalent calcul have a reasonable potential to be recovered and sold.	Hillgrove Total		-			
t is Red River's opinion that all elements included in the metal equivalent calcul nave a reasonable potential to be recovered and sold.						-
		-				
	2					

About Red River Resources (ASX: RVR)

RVR is seeking to build a multi-asset operating business focused on base and precious metals with the objective of delivering prosperity through lean and clever resource development.

RVR's foundation asset is the Thalanga Base Metal Operation in Northern Queensland, which was acquired in 2014 and where RVR commenced copper, lead and zinc concentrate production in September 2017.

RVR has recently acquired the high-grade Hillgrove Gold Project in New South Wales, which will enable RVR to build a multi-asset operating business focused on base and precious metals. Gold production at Hillgrove is scheduled to restart at the end of CY2020.

On behalf of the Board, Mel Palancian Managing Director Red River Resources Limited

For further information please visit Red River's website or contact:

Mel Palancian Managing Director <u>mpalancian@redriverresources.com.au</u> D: +61 3 9017 5380 Nathan Ryan NWR Communications <u>nathan.ryan@nwrcommunications.com.au</u> M: +61 420 582 887

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Mitchell Tarrant who is a member of The Australasian Institute of Mining and Metallurgy, and a full time employee of Red River Resources Ltd., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Tarrant consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Competent Persons Statement Blacklode & Sunlight Mineral Resource

The information in this report that relates to the estimation and reporting of the Blacklode & Sunlight Mineral Resource is based on and fairly represents, information and supporting documentation compiled by Mr Peter Carolan who is a Member of The Australasian Institute of Mining and Metallurgy and a full-time employee of Red River Resources Ltd.

Mr Carolan has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Carolan consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The information in this report that relates to database compilation, geological interpretation and mineralisation wireframing, project parameters and costs and overall supervision and direction of the Blacklode & Sunlight estimation is based on and fairly represents, information and supporting documentation compiled under the overall supervision and direction of Mr Carolan.

Competent Persons Statement Brackin's Spur, Clark's Gully & Syndicate Mineral Resources

The information in this report that relates to the reporting of the Brackin's Spur, Clark's Gully & Syndicate Mineral Resource Estimate reported in accordance with the JORC 2012 Code is based on and fairly represents, information and supporting documentation compiled by Rodney Webster who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr Webster is independent of Hillgrove Mines Pty Ltd. and an employee of AMC Consultants Pty Ltd. Mr Webster has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original report and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original report.

Gold Equivalent Calculation

Blacklode & Sunlight Mineral Resources

It is Hillgrove Mines Pty Ltd opinion that all the elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold, based on previous mill production and sales. The gold equivalent (Au Eq.) and the cut-off are based on the following:

Metallurgical test work (carried out in 2016 and 2017) and mill production data demonstrate that total gravity & float recoveries of 91% Au and 86% Sb are achievable. The antimony recovery is applicable where Sb head grades are 1% or greater. The majority of the Sunlight Resource contains an antimony grade of less than 0.5% and therefore antimony recovery is not expected from this material.

The Au Eq. value was calculated using a gold price of US\$1,234 per oz and an antimony price of US\$ 5,650 per tonne where: Au Eq. (g/t) = (Au g/t) + (1.424 * Sb %)

Brackin's Spur, Clark's Gully & Syndicate Mineral Resources

It is Hillgrove Mines Pty Ltd opinion that all the elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold, based on previous mill production and sales. The gold equivalent (Au Eq.) and the cut-off are based on the following:

- Metallurgical testwork (carried out in 2016 and 2017) and mill production data demonstrates that total gravity/float recoveries of 91% gold (Au) and 86% antimony (Sb) are achievable.
- Net smelter return calculations for the deposits indicate that Au Eq. grades above 4.8 g/t are economic, based on site costs, mill recoveries, off-site transportation and royalty costs.

Au Eq. was calculated based on commodity prices as at 18 July 2017. The individual grades, the assumed commodity prices and metal recoveries, and the Au Eq. formula are as follows:

- Au Eq. (g/t) = (Au g/t * 91%) + (2.0 * Sb % * 86%)
 - Where 2.0 = (US\$7,950/100) / (US\$1,234/31.1035)
 - Gold price = US\$1,234/oz and gold recovery = 91%
- Antimony price = US\$7,950/tonne and antimony recovery = 86%

APPENDIX 1

Table 5 Eleanora drill hole information summary, Hillgrove Gold Project

Hole ID	Depth (m)	Dip	Azi (MGA)	East (MGA)	North (MGA)	RL (MGA)	Lease ID	Hole Status
ELG022	132	-55	59.7	394627	6616814	969.9	GL3980	Completed (Historic RC Drillhole)
ELG032	90	-60	279.4	394684	6616889	968.5	GL3980	Completed (Historic RC Drillhole)
ELG033	123	-79	269.9	394689	6616880	968.8	GL3980	Completed (Historic RC Drillhole)
ELG034	69	-67	269.5	394656	6616949	974	GL3959	Completed (Historic RC Drillhole)
ELG035	150	-82	208	394659	6616948	974	GL3959	Completed (Historic RC Drillhole)
ELG036	177	-69	24.8	394660	6616808	969	GL3980	Completed (Historic RC Drillhole)
ELG136	74.7	-51	111.1	394621	6616936	968.5	GL3959	Completed (Partial Assays Pending)
ELG137	75	-46	235	394696	6616885	969.4	GL3980	Completed (Partial Assays Pending)
ELG138	90.05	-46	203	394700	6616880	969.5	GL3980	Completed (Partial Assays Pending)
ELG139	164.75	-46	22.4	394628	6616828	969.1	GL3980	Assays Pending
ELG140	123	-51	50.2	394628	6616828	969	GL3980	Assays Pending
ELG141	150	-45	69	394544	6616932	978	GL3980	In Progress
ELG142	30	-45	222	394545	6617159	989	ML1599	To be drilled
ELG143	80	-69	233	394547	6617179	990	ML1599	To be drilled
ELG144	45	-45	256	394547	6617179	990	ML1599	To be drilled

APPENDIX 2

Table 6 Current Eleanora diamond drill hole assay data, Hillgrove Gold Project

Hole ID	From (m)	To (m)	Intersection (m)	Au g/t	Sb %	Ore Zone
ELG136	40.0	41.0	1.00	0.02	*	
ELG136	41.0	41.4	0.40	0.11	*	
ELG136	41.4	41.8	0.40	3.01	*	Eleanora
ELG136	41.8	42.8	1.00	0.21	*	Eleanora
ELG136	42.8	43.8	1.00	1.35	*	Eleanora
ELG136	43.8	44.4	0.60	0.03	*	Dyke
ELG136	44.4	45.0	0.60	0.02	*	Dyke
ELG136	45.0	45.8	0.80	0.01	*	Dyke
ELG136	45.8	46.4	0.60	5.64	*	Eleanora
ELG136	46.4	47.0	0.60	1.88	*	Eleanora
ELG136	47.0	48.0	1.00	1.32	*	Eleanora
ELG136	48.0	49.0	1.00	1.49	*	Eleanora
ELG136	49.0	50.0	1.00	1.62	*	Eleanora
ELG136	50.0	51.0	1.00	2.76	*	Eleanora
ELG136	51.0	52.0	1.00	3.05	*	Eleanora
ELG136	52.0	53.0	1.00	3.57	*	Eleanora
ELG136	53.0	54.0	1.00	5.66	*	Eleanora
ELG136	54.0	55.0	1.00	3.75	*	Eleanora
ELG136	55.0	56.0	1.00	1.19	*	Eleanora
ELG136	56.0	57.0	1.00	1.58	*	Eleanora
ELG136	57.0	58.0	1.00	2.35	*	Eleanora
ELG136	58.0	59.0	1.00	0.41	*	Licanora
ELG136	59.0	60.0	1.00	0.09	*	
ELG136	60.0	61.0	1.00	0.06	*	
ELG136	61.0	62.0	1.00	0.05	*	
ELG136	62.0	63.0	1.00	0.03	*	
ELG136	63.0	63.7	0.70	0.24	*	
ELG136	64.0	65.0	1.00	0.50	*	
ELG136	65.0	65.7	0.70	0.81	*	
ELG136	65.7	66.3	0.60	0.06	*	
ELG136	66.3	66.5	0.20	0.45	*	
ELG136	66.5	67.0	0.50	0.82	*	
ELG136	67.0	67.5	0.50	5.42	*	
ELG136	67.5	68.0	0.50	0.01	*	
ELG136	68.0	68.8	0.80	2.61	*	
ELG136	68.8	69.4	0.60	0.16	*	
ELG136	69.4	70.0	0.60	0.02	*	
ELG136	70.0	71.0	1.00	0.35	*	
ELG136	71.0	72.0	1.00	0.09	*	
ELG136	72.0	73.0	1.00	0.28	*	
ELG136	73.0	74.0	1.00	0.01	*	
	74.0	74.7	0.70	2.46	*	
ELG136						

Current Eleanora diamond drill hole assay	data, Hillgrove Gold Project (continued)
---	--

Hole ID	From (m)	To (m)	Intersection (m)	Au g/t	Sb %	Ore Zone
ELG137	35.00	36.00	1.00	1.55	*	
ELG137	36.00	36.70	0.70	1.39	*	
ELG137	36.70	37.40	0.70	0.03	*	
ELG137	37.40	38.00	0.60	0.01	*	
ELG137	38.20	38.30	0.10	0.01	*	
ELG137	38.50	39.00	0.50	0.02	*	
ELG137	39.00	40.00	1.00	0.04	*	
ELG137	40.00	41.00	1.00	0.04	*	
ELG137	41.00	42.00	1.00	0.04	*	
ELG137	42.00	43.00	1.00	1.93	*	Eleanora
ELG137	43.00	44.00	1.00	1.15	*	Eleanora
ELG137	44.00	45.00	1.00	1.66	*	Eleanora
ELG137	45.00	46.00	1.00	2.35	*	Eleanora
ELG137	46.00	47.00	1.00	0.28	*	Eleanora
ELG137	47.00	47.50	0.50	0.35	*	Eleanora
ELG137	47.50	48.10	0.60	2.02	*	Eleanora
ELG137	48.10	48.80	0.70	0.05	*	Dyke
ELG137	48.80	49.40	0.60	0.12	*	Dyke
ELG137	49.40	50.00	0.60	1.32	*	Eleanora
ELG137	50.00	51.00	1.00	0.03	*	
ELG137	51.00	52.00	1.00	0.52	*	
ELG137	52.00	53.00	1.00	0.09	*	
ELG137	53.00	54.00	1.00	0.03	*	
ELG137	54.00	55.00	1.00	0.04	*	
ELG137	55.00	56.00	1.00	0.31	*	
ELG137	56.00	57.00	1.00	0.12	*	
ELG137	57.00	58.00	1.00	0.31	*	
ELG137	58.00	59.00	1.00	0.53	*	
ELG137	59.00	60.00	1.00	0.93	*	
ELG137	60.00	61.00	1.00	0.02	*	
*Antimony	assays still o	outstandin	g			
Downhole	width					

Hole ID	From (m)	To (m)	Intersection (m)	Au g/t
ELG138	46.00	47.00	1.00	3.18
ELG138	47.00	48.00	1.00	0.79
ELG138	48.00	49.00	1.00	0.95
ELG138	49.00	50.00	1.00	3.60
ELG138	50.00	51.00	1.00	0.14
ELG138	51.00	52.00	1.00	1.99
ELG138	52.00	53.00	1.00	0.16
ELG138	53.00	54.00	1.00	1.49
ELG138	54.00	55.00	1.00	0.69
ELG138	55.00	56.00	1.00	0.58
ELG138	56.00	57.00	1.00	0.13
ELG138	57.00	58.00	1.00	0.38
ELG138	58.00	59.00	1.00	0.06
ELG138	59.00	60.00	1.00	0.18
ELG138	60.00	61.00	1.00	0.02
ELG138	61.00	61.70	0.70	0.02
ELG138	61.70	62.40	0.70	<0.03
ELG138	62.40	63.00	0.60	1.24
ELG138	63.00	63.70	0.70	1.24
ELG138	63.70	64.20	0.50	9.76
ELG138	64.20	64.75	0.55	7.03
ELG138 ELG138	64.75	65.60	0.85	0.03
ELG138 ELG138	65.60	66.40	0.80	0.05
ELG138 ELG138	66.40	67.10	0.70	8.89
ELG138 ELG138	67.10	67.40	0.30	6.56
ELG138	67.40	68.00	0.60	3.12
ELG138 ELG138	68.00	69.00	1.00	2.94
ELG138 ELG138	69.00	70.00	1.00	1.19
ELG138 ELG138	70.00	71.00	1.00	3.24
ELG138 ELG138	70.00	72.00	1.00	0.78
ELG138 ELG138	72.00	73.00	1.00	0.23
ELG138 ELG138	73.00	74.00	1.00	0.25
ELG138 ELG138	74.00	75.00	1.00	0.02
ELG138 ELG138	75.00	76.00	1.00	0.94
ELG138 ELG138	76.00	77.00	1.00	0.21
		78.00		
ELG138	77.00		1.00	0.06
ELG138	78.00	79.00	1.00	3.09
ELG138	79.00	80.00	1.00	0.03
*Antimony a		utstanding		
Downhole wi	idth			

Current Eleanora diamond drill hole assay data, Hillgrove Gold Project (continued)

Sb %

* *

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

Ore Zone

Eleanora

Dyke

Dyke

13

Hole ID Intersection (m) Au g/t From (m) To (m) ELG022 103.00 104.00 1.00 ELG022 104.00 105.00 1.00 ELG022 105.00 106.00 1.00 ELG022 106.00 107.00 1.00 ELG022 107.00 108.00 1.00 ELG022 108.00 109.00 1.00 ELG022 109.00 110.00 1.00 ELG022 110.00 111.00 1.00 ELG022 111.00 112.00 1.00 ELG022 112.00 113.00 1.00 ELG022 113.00 114.00 1.00 ELG022 114.00 1.00 115.00 ELG022 115.00 116.00 1.00 ELG022 116.00 117.00 1.00 ELG022 117.00 118.00 1.00 ELG022 118.00 119.00 1.00 ELG032 35.00 36.00 1.00 ELG032 36.00 37.00 1.00 ELG032 37.00 38.00 1.00 ELG032 38.00 39.00 1.00 ELG032 39.00 40.00 1.00 ELG032 40.00 41.00 1.00 ELG032 41.00 42.00 1.00 ELG032 42.00 43.00 1.00 ELG032 43.00 44.00 1.00 ELG032 44.00 45.00 1.00 ELG032 45.00 46.00 1.00 ELG032 46.00 47.00 1.00 ELG032 47.00 48.00 1.00 ELG032 48.00 49.00 1.00 ELG032 49.00 50.00 1.00 ELG032 50.00 51.00 1.00 ELG032 51.00 52.00 1.00 ELG032 52.00 53.00 1.00 ELG032 53.00 54.00 1.00 ELG032 54.00 55.00 1.00 Downhole width

Table 7 Historic Eleanora RC drill hole assay data, Hillgrove Gold Project

Sb %

0.01%

0.01%

0.16%

0.78%

0.62%

0.74%

0.22%

0.04%

0.42%

0.69%

0.07%

0.02%

0.04%

0.02%

0.05%

0.01%

0.00%

0.00%

0.00%

0.00%

0.03%

0.18%

0.04%

0.05%

0.18%

1.31%

0.08%

0.73%

0.04%

0.01%

0.01%

0.23%

0.29%

0.19%

0.13%

0.18%

0.01

0.01

2.99

2.85

4.50

8.50

2.11

0.80

7.31

7.53

4.31

7.11

0.83

0.65

0.08

0.02

0.06

0.65

1.84

3.75

2.00

0.65

2.95

2.52

5.28

0.54

2.13

4.34

5.07

2.93

0.37

2.61

2.58

0.83

0.18

10.80

Ore Zone

Eleanora

Historic Eleanora RC drill hole assay data, Hillgrove Gold Project (continued)

Hole ID	From (m)	To (m)	Intersection (m)	Au g/t	Sb %	Ore Zone
ELG033	81.00	82.00	1.00	0.51	0.00%	
ELG033	82.00	83.00	1.00	1.04	0.01%	
ELG033	83.00	84.00	1.00	0.50	0.02%	
ELG033	84.00	85.00	1.00	3.50	0.10%	Eleanora
ELG033	85.00	86.00	1.00	12.20	0.05%	Eleanora
ELG033	86.00	87.00	1.00	8.56	0.03%	Eleanora
ELG033	87.00	88.00	1.00	2.91	0.03%	Eleanora
ELG033	88.00	89.00	1.00	6.63	0.07%	Eleanora
ELG033	89.00	90.00	1.00	12.00	0.60%	Eleanora
ELG033	90.00	91.00	1.00	6.86	1.05%	Eleanora
ELG033	91.00	92.00	1.00	0.40	0.05%	Dyke
ELG033	92.00	93.00	1.00	0.31	0.03%	Dyke
ELG033	93.00	94.00	1.00	0.20	0.04%	Dyke
ELG033	94.00	95.00	1.00	2.89	1.18%	Eleanora
ELG033	95.00	96.00	1.00	3.63	0.10%	Eleanora
ELG033	96.00	97.00	1.00	0.08	0.01%	
ELG033	97.00	98.00	1.00	0.03	0.00%	
ELG034	40.00	41.00	1.00	0.09	0.00%	
ELG034	41.00	42.00	1.00	0.24	0.04%	
ELG034	42.00	43.00	1.00	3.65	0.01%	Eleanora
ELG034	43.00	44.00	1.00	4.81	0.01%	Eleanora
ELG034	44.00	45.00	1.00	2.47	0.02%	Eleanora
ELG034	45.00	46.00	1.00	5.33	0.12%	Eleanora
ELG034	46.00	47.00	1.00	1.61	0.02%	Eleanora
ELG034	47.00	48.00	1.00	0.24	0.01%	
ELG034	48.00	49.00	1.00	0.31	0.01%	
ELG035	84.00	85.00	1.00	0.03	0.00%	
ELG035	85.00	86.00	1.00	0.03	0.00%	
ELG035	86.00	87.00	1.00	1.15	0.10%	Eleanora Splay
ELG035	87.00	88.00	1.00	7.48	0.35%	Eleanora Splay
ELG035	88.00	89.00	1.00	9.15	0.64%	Eleanora Splay
ELG035	89.00	90.00	1.00	11.25	2.77%	Eleanora Splay
ELG035	90.00	91.00	1.00	3.27	0.18%	Eleanora Splay
ELG035	91.00	92.00	1.00	0.65	0.06%	Eleanora Splay
ELG035	92.00	93.00	1.00	1.41	0.03%	Eleanora Splay
ELG035	93.00	94.00	1.00	1.08	0.02%	Eleanora Splay
1	94.00	95.00	1.00	0.78	0.03%	
ELG035						

Hole ID	From (m)	To (m)	Intersection (m)	Au g/t	Sb %	Ore Zone
ELG035	116.00	117.00	1.00	0.22	0.00%	
ELG035	117.00	118.00	1.00	0.65	0.02%	
ELG035	118.00	119.00	1.00	1.94	0.01%	Eleanora
ELG035	119.00	120.00	1.00	2.84	0.11%	Eleanora
ELG035	120.00	121.00	1.00	3.46	0.01%	Eleanora
ELG035	121.00	122.00	1.00	1.68	0.01%	Eleanora
ELG035	122.00	123.00	1.00	2.36	0.02%	Eleanora
ELG035	123.00	124.00	1.00	0.94	0.01%	Eleanora
ELG035	124.00	125.00	1.00	1.00	0.01%	Eleanora
ELG035	125.00	126.00	1.00	0.16	0.01%	Eleanora
ELG035	126.00	127.00	1.00	0.70	0.08%	Eleanora
ELG035	127.00	128.00	1.00	5.57	0.52%	Eleanora
ELG035	128.00	129.00	1.00	3.65	0.98%	Eleanora
ELG035	129.00	130.00	1.00	1.08	0.02%	Eleanora
ELG035	130.00	131.00	1.00	1.40	0.06%	Eleanora
ELG035	131.00	132.00	1.00	0.53	0.02%	
ELG035	132.00	133.00	1.00	0.49	0.01%	
Downhole v	width					

Historic Eleanora RC drill hole assay data, Hillgrove Gold Project (continued)

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	Commentary
	Sampling	Nature and quality of sampling (eg cut	Diamond drilling (DD) and Reverse Circulation (RC)
	techniques	channels, random chips, or specific	drilling techniques were used to obtain samples.
_	teeningues	specialised industry standard measurement	Diamond core was placed in core trays for logging
)	tools appropriate to the minerals under	and sampling. Half core samples were nominated by
		investigation, such as down hole gamma	the geologist from diamond core based on visual
		sondes, or handheld XRF instruments, etc).	inspection of mineralisation. Intervals ranged from
		These examples should not be taken as	0.25 to 2m based on geological boundaries
		limiting the broad meaning of sampling.	Diamond samples were sawn in half using an onsite
		Include reference to measures taken to	core saw.
/		ensure sample retrospectivity and the	The drill core samples were sent to SGS Laboratories
		appropriate calibration of any measurement	in West Wyalong.
		tools or systems used.	Samples were crushed to sub 6mm, split and
)		Aspects of the determination of	pulverised to sub 75 μ m in order to produce a
/		mineralisation that are Material to the	representative sub-sample for analysis.
		Public Report.	Analysis of the diamond drill samples consisted of a
)		In cases where 'industry standard' work has	four-acid digest and Inductively Coupled Plasma
		been done this would be relatively simple	Optical Emission Spectrometry (ICP-OES) for the
)		(eg 'reverse circulation drilling was used to	following elements; Ag, As, Cu, Pb, S, Sb, W & Zn was
7		obtain 1 m samples from which 3 kg was	undertaken. The samples were also assayed for Au
		pulverised to produce a 30 g charge for fire	using a 25g Fire Assay technique. If over detection on
		assay'). In other cases, more explanation	the ICP reached than the samples were assayed using
		may be required, such as where there is	XRF. Standards and blanks were inserted at a rate of
)		coarse gold that has inherent sampling	5%.
/		problems. Unusual commodities or	The RC drilling was conducted by Straits Resources in
1		mineralisation types (eg submarine nodules)	2004-2005. These samples were assayed by ALS
		may warrant disclosure of detailed	Laboratories in Brisbane.
		information.	
)	Drilling	Drill type (eg core, reverse circulation,	Diamond drilling (DD) and Reverse Circulation (RC)
	techniques	open-hole hammer, rotary air blast, auger,	drilling techniques were used to obtain samples. The
		Bangka, sonic, etc) and details (eg core	diamond drill core was NQ2 in size.
/		diameter, triple or standard tube, depth of	
		diamond tails, face-sampling bit or other	
		type, whether core is oriented and if so, by	
		what method, etc).	
/	Drill sample	Method of recording and assessing core and	Sample recovery is measured and recorded by
	recovery	chip sample recoveries and results assessed.	company trained geology technicians.
)	ŕ	Measures taken to maximise sample	Minimal sample loss has occurred.
		recovery and ensure representative nature	
		of the samples.	
		Whether a relationship exists between	
		sample recovery and grade and whether	
)		sample bias may have occurred due to	
7		preferential loss/gain of fine/coarse	
ļ		material.	
	Logging	Whether core and chip samples have been	Holes are logged to a level of detail that would
		geologically and geotechnically logged to a	support mineral resource estimation.
		level of detail to support appropriate	Qualitative logging includes lithology, alteration and
		Mineral Resource estimation, mining	textures.
		studies and metallurgical studies.	Quantitative logging includes sulphide and gangue
		Whether logging is qualitative or	mineral percentages.
		quantitative in nature. Core (or costean,	All drill core was photographed.
L		channel, etc) photography.	All drill holes have been logged in full.

Cr	iteria	JORC Code explanation
		The total length and percentage of the
		relevant intersections logged.
Su	ıb-sampling	If core, whether cut or sawn and whether
	chniques	quarter, half or all core taken.
	nd sample	If non-core, whether riffled, tube sample
	eparation	rotary split, etc and whether sampled we
\downarrow^{μ}	epurution	or dry.
μ		For all sample types, the nature, quality a
		appropriateness of the sample preparation
		technique.
		Quality control procedures adopted for a
		sub-sampling stages to maximise
		representivity of samples.
		Measures taken to ensure that the samples
		is representative of the in-situ material
		collected, including for instance results for
		field duplicate/second-half sampling.
		Whether sample sizes are appropriate to
-		the grain size of the material being samp
	uality of	The nature, quality and appropriateness
	say data	the assaying and laboratory procedures
ar	-	used and whether the technique is
	boratory	considered partial or total.
te	sts	For geophysical tools, spectrometers,
		handheld XRF instruments, etc, the
		parameters used in determining the anal
1		including instrument make and model,
		reading times, calibrations factors applied
1		and their derivation, etc.
		Nature of quality control procedures
		adopted (eg standards, blanks, duplicates
		external laboratory checks) and whether
1		acceptable levels of accuracy (ie lack of b
<u> </u>		and precision have been established.
Ve	erification	The verification of significant intersection
of	sampling	by either independent or alternative
ar	nd assaying	company personnel.
1		The use of twinned holes.
		Documentation of primary data, data ent
		procedures, data verification, data storage
		(physical and electronic) protocols.
		Discuss any adjustment to assay data.
Lo	cation of	Accuracy and quality of surveys used to
	ita points	locate drill holes (collar and down-hole
		surveys), trenches, mine workings and ot
		locations used in Mineral Resource
		estimation.
		Specification of the grid system used.
		Quality and adequacy of topographic
		control.
	nta aposica	Data spacing for reporting of Exploration
DC	ata spacing	Results

CITTELIA		Commentary	
	The total length and percentage of the		
	relevant intersections logged.		
Sub-sampling If core, whether cut or sawn and whether		Core was sawn, and half core sent for assay.	
techniques quarter, half or all core taken.		Sample preparation is industry standard, occurring at	
and sample If non-core, whether riffled, tube sampled,		an independent commercial laboratory which has its	
preparation	rotary split, etc and whether sampled wet	own internal Quality Assurance and Quality Control	
or dry.		procedures.	
	For all sample types, the nature, quality and	Samples were crushed to sub 6mm, split and	
	appropriateness of the sample preparation	pulverised to sub 75µm in order to produce a	
	technique.	representative sub-sample for analysis.	
	Quality control procedures adopted for all	Laboratory certified standards were used in each	
	sub-sampling stages to maximise	sample batch.	
	representivity of samples.	The sample sizes are considered to be appropriate to	
	Measures taken to ensure that the sampling	correctly represent the mineralisation style.	
	is representative of the in-situ material		
	collected, including for instance results for		
	field duplicate/second-half sampling.		
	Whether sample sizes are appropriate to		
	the grain size of the material being sampled.		
Quality of	The nature, quality and appropriateness of	The assay methods employed are considered	
assay data	the assaying and laboratory procedures	appropriate for near total digestion.	
and	used and whether the technique is	Laboratory certified standards were used in each	
laboratory	considered partial or total.	sample batch.	
tests	For geophysical tools, spectrometers,	Certified standards returned results within an	
	handheld XRF instruments, etc, the	acceptable range.	
	parameters used in determining the analysis	No field duplicates are submitted for diamond core.	
	including instrument make and model,		
	reading times, calibrations factors applied		
	and their derivation, etc.		
	Nature of quality control procedures		
	adopted (eg standards, blanks, duplicates,		
	external laboratory checks) and whether		
	acceptable levels of accuracy (ie lack of bias)		
	and precision have been established.		
	The verification of significant intersections	Laboratory results have been reviewed by Company	
Verification	by either independent or alternative	geologists and laboratory technicians.	
of sampling	company personnel.	No twinned holes were drilled for this data set.	
and assaying	The use of twinned holes.	No twittled holes were drilled for this data set.	
	Documentation of primary data, data entry		
	procedures, data verification, data storage		
	(physical and electronic) protocols.		
	Discuss any adjustment to assay data.		
Location of	Accuracy and quality of surveys used to	Collars were surveyed with RTKGPS (+-0.1m).	
data points	locate drill holes (collar and down-hole	Down hole surveys conducted with digital magnetic	
	surveys), trenches, mine workings and other	multi-shot camera at 20-40m intervals. A portion of	
	locations used in Mineral Resource	drill holes were surveyed by multi-shot survey.	
	estimation.	Coordinate system used is MGA94 Zone 56	
	Specification of the grid system used.		
	Quality and adequacy of topographic		
	control.		
Data spacing	Data spacing for reporting of Exploration	The current drill spacing is approximately 30-60m.	
and	Results.	No sample compositing has been applied.	
distribution	Whether the data spacing and distribution		
	is sufficient to establish the degree of		
	geological and grade continuity appropriate		

Commentary

Criteria	JORC Code explanation	Commentary
	for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill holes are orientated perpendicular to the perceived strike of the host lithologies where possible. The orientation of the multiple lenses varies resulting in some holes resulting in less than perpendicular intersections. Drill holes are drilled at a dip based on logistics and dip of anomaly to be tested. The orientation of the drilling is designed to not bias sampling. Orientation of the HQ2 core was undertaken to define structural orientation.
Sample security	The measures taken to ensure sample security.	Samples have been overseen by company staff during transport from site to the SGS laboratory in West Wyalong.
Audits or reviewsThe results of any audits or reviews of sampling techniques and data.		No audits or reviews have been carried out at this point.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drilling was conducted on the following mining leases; GL3980, GL3959 & ML1599. These leases are held by Hillgrove Mines Pty Ltd. (a wholly owned subsidiary of Red River Resources).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The historic RC drilling was conducted by Straits Resources in 2004-2005.
Geology	Deposit type, geological setting and style of mineralisation.	The exploration model is orogenic gold/antimony.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case.	See Appendix 1 – Drill Hole Details See Appendix 2 – Assay Details
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Interval length weighted assay results are reported. No cutting of high grades has been done.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg	The mineralisation is interpreted to be dipping at approximately 90 degrees, drill holes have been designed to intercept the mineralisation as close to perpendicular as possible. Down hole intercepts are reported. True widths are likely to be approximately 30 to 80% of the down hole widths.

	Criteria	JORC Code explanation	Commentary
		'down hole length, true width not known').	
	Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections.	Refer to plans and sections within report.
	Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported.	All meaningful and material data is reported.
	Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further Drilling targeting the Eleanora lode is ongoing.