Developing innovative processing technologies to produce nickel sulphate, cobalt sulphate and High Purity Alumina.
The information in this presentation is an overview and does not contain all information necessary for investment decisions. In making investment decisions in connection with any acquisition of securities, investors should rely on their own examination and consult their own legal, business and/or financial advisers.

This document has been made available for information purposes only and does not constitute a prospectus, short form prospectus, profile statement or offer information statement. This document is not subject to the disclosure requirements affecting disclosure documents under Chapter 6D of the Corporations Act 2001 (Cth). The information in this document may not be complete and may be changed, modified or amended at any time by the Company, and is not intended to, and does not, constitute representations and warranties of the Company.

Queensland Pacific Metals Pty Ltd does not have a significant operating history on which to base an evaluation of its business and prospects. Therefore, the information contained in this document is inherently speculative. Further, securities of companies such as the Company generally involve a higher degree of risk and are more volatile than securities of more established companies. Accordingly, an investment in the Company must be considered as speculative.

The information contained in this document has been prepared in good faith, neither the Company, Queensland Pacific Metals Pty Ltd, or any of their respective directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this document. Accordingly, to the maximum extent permitted by law, none of the Company, Queensland Pacific Metals Pty Ltd, their respective directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this document or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this document.

This document may contain statements that may be deemed “forward looking statements”. Forward risks, uncertainties and other factors, many of which are outside the control of the Company can cause actual results to differ materially from such statements. The Company makes no undertaking to update or revise such statements but has made every endeavour to ensure that they are fair and reasonable at the time of making this document. Investors are cautioned that any forward-looking statements are not guarantees of future performance and that actual results or developments may differ materially from those projected in any forward-looking statements made.
Capital Raising

~$4,400,000 Placement
Two tranche placement to institutional and sophisticated investors

Use of Funds

<table>
<thead>
<tr>
<th>Use of Funds</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piloting testwork including production of intermediate products and subsequent refining to battery grade chemicals</td>
<td>A$3.0M</td>
</tr>
<tr>
<td>TECH Project advancement - approvals, feasibility work, infrastructure</td>
<td>A$0.5M</td>
</tr>
<tr>
<td>Corporate & admin</td>
<td>A$0.5M</td>
</tr>
<tr>
<td>Working Capital</td>
<td>A$0.4M</td>
</tr>
<tr>
<td>Total</td>
<td>A$4.4M</td>
</tr>
</tbody>
</table>
Re-Energising Nickel Production

PM1 PROPOSITION – Townsville Energy Chemicals Hub (TECH)

Ore Supply – High Grade Nickel-Cobalt Laterite source from New Caledonia

- Laterite ore (1.6% nickel)
- Shipping from New Caledonia to Townsville

Value Add Business

- Nickel sulphate
- Cobalt sulphate
- 4N HPA

Processing Plant

HPA Refinery
- Aluminium Hydroxide

Sulphate Refinery
- Ni-Co Mixed Hydroxide Precipitate

High grade ore supply from established mines

History of delivering consistent grade to minimise variability

Safe jurisdiction

Clean technology
Recycled leach agent
Off the shelf equipment
Fast to production (no mine)

High purity - Value add commercial refining processes

Products for high growth EV sector
PM1 Proposition

High Grade Ore Supply
- Secured high grade 15 year ore supply agreement with two major New Caledonia mining companies - highest quality ore bodies in the world.
- High grades ~1.6% Ni / ~0.17% Co to be supplied from existing mines
- Consistent quality and tonnage, supplied Queensland Nickel Refinery for 38 years, low mining/exploration risk

No Mining Required
- Reduced environmental footprint
- No flora/fauna/native title considerations
- Faster approvals process than a traditional mining project

Demonstrated Technology
- Although the DNi Process hasn’t been commercialised, and therefore carries some risk, offsetting this are the facts that:
 - The technology has been extensively tested on a wide range of ores (Brazil, Australia, Indonesia, New Caledonia)
 - The individual unit operations within the flowsheet are commercial in other industries
 - Process equipment is simple and “off-the-shelf” - no special alloys, no huge autoclaves, low pressure (atmospheric)
- Nitric acid is recycled – cost advantage over HPAL
- Recovery of all valuable metals in the ore

Townsville site secured at Lansdown Park
- Extensive infrastructure network including Port, Rail and Road and multiuser opportunities
- Long term history of handling and processing imported ore from New Caledonia/Philippines/Indonesia
- Skilled labour and engineering support

Modest Environmental Footprint
- Residue is benign and only represents 20% of original ore feed – no tailings dam required
- Potential to utilise residue as engineered landfill - this would make the TECH Project have zero solids discharge
- “Green” appeals to ultimate end users of battery chemicals who are very socially and environmentally conscious

Experienced Management
- Combined 60+ years nickel laterite experience
- Experience in New Caledonia and with majors Rio Tinto, BHP and Alcoa
- Strong project development knowledge
Nitric acid leaching advantages

Nitric acid leaching: most efficient acid
- Low temperature, atmospheric pressure
- Treats entire orebody
- Simple alloys/construction
- 95% metal extraction
- Licensed from Direct Nickel (DNi Process™)

Recycled: recycle/re-use > 98% of the leaching agent
- Significantly reduce operating costs
- Greatly reduced environmental impact

Product options: Mixed Hydroxide Product MHP (>40% nickel) or refined, battery-grade products

Co-product revenues: Haematite, Magnesia, Alumina
- Little or no residues

Scalable: Stirred tanks – just make them bigger

Speed to market:
- Approvals – no mine, no effluent, no tailings
- Construction – simple alloys and vessels
DNi Process™ vs High Pressure Acid Leach (HPAL)

<table>
<thead>
<tr>
<th></th>
<th>DNi Process™</th>
<th>HPAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ore Feed</td>
<td>Full lateritic ore profile</td>
<td>Limonitic ore (typically or low Mg saprolite¹)</td>
</tr>
<tr>
<td>Ore Preparation</td>
<td>Ore drying</td>
<td>No drying required</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 atmosphere</td>
<td>Up to 44-59 atmospheres</td>
</tr>
<tr>
<td>Temperature</td>
<td>100°C</td>
<td>250-270°C</td>
</tr>
<tr>
<td>Plant Materials</td>
<td>304-series stainless steel</td>
<td>Titanium-lined autoclaves and piping</td>
</tr>
<tr>
<td>Acid Consumption</td>
<td>25-80 kg of nitric acid (68%) per tonne of dry ore processed² ≥98% of the nitric acid is recycled</td>
<td>250-500 kg of sulphuric acid (98%) per tonne of ore processed</td>
</tr>
<tr>
<td>Waste Materials</td>
<td>Environmentally inert dry nitrogen-rich residue, contributing to mine rehabilitation as a fertiliser</td>
<td>Tailings about 3x the volume of the DNi Process requiring neutralisation, containment and indefinite monitoring</td>
</tr>
<tr>
<td>Product</td>
<td>Mixed (Ni-Co) Hydroxide Product</td>
<td>Mixed (Ni-Co) Hydroxide Product</td>
</tr>
<tr>
<td>By-Products</td>
<td>Haematite, Magnesia, Aluminium hydroxide, Manganese, Scandium</td>
<td>Ammonium sulphate, Scandium</td>
</tr>
<tr>
<td>Technology</td>
<td>Easily scalable (stirred tanks, not complex pressure vessels) Yet to be proven at commercial scale</td>
<td>High capacity required to reach economic threshold Works, but with a majority of commercial failures³</td>
</tr>
</tbody>
</table>

1. Mg content contributes to high acid consumption
2. While nitric acid is significantly more expensive than sulphuric acid, the DNi Process™ includes the ability to recycle ≥98% of the nitric acid
3. Economic and/or technical failures: Bulong, Cawse, Ambatovy, Goro and Ravensthorpe

Source: Direct Nickel, Pure Minerals, Terra Studio
Projected EV Nickel Demand - The Right Time for DNi Process™

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>1st Gen Nickel Pig Iron</td>
</tr>
<tr>
<td>2018</td>
<td>EV Revolution</td>
</tr>
<tr>
<td>2020</td>
<td>TECH Project</td>
</tr>
</tbody>
</table>

1st Gen Nickel Pig Iron
- China plants – 8% Ni (low quality)

2nd Gen Nickel Pig Iron (NPI)
- 14% Ni (high quality)
- Squeezing out need for LME nickel metal for stainless steel
- Most viable process for stainless steel industry

3rd Generation HPAL
- Goro 2009→ (operational, 65% design)
- Ramu 2012→ (operational, 5 year ramp-up)
- Ambatovy 2012→ (operational, poor availability)
- Taganito 2013→ (operational, poor availability)
- Gordes 2014→ (operational, low throughput)

DNi Pilot Plant
- Successful demonstration of technology but the time wasn’t right

The Need for Green
- The world is more socially, environmentally conscious
- HPAL/NPI - sovereign risk, tailings
- NPI - very high GHG intensity
- TECH Project – delivering Ni/Co from a safe jurisdiction with a modest environmental footprint

EV Revolution
- Class 1 nickel (after refining) for batteries – NPI not suitable for batteries
- Not enough sulphide resources to meet demand – laterites must be developed
- HPAL issues (capital, environment, failures) – Right time for DNi Process™
Piloting Activities

QPM's pilot plant activities will:
- Demonstrate flowsheet with representative ore
- Produce samples for potential customers
- Generate results to feed directly into a Bankable Feasibility Study
- Provide opportunities for investor visits (physical or virtual)
- Clear the path to start Definitive Feasibility study

Completed ✓
- Bulk Sample sourced from New Caledonia partners has been transported to Perth

Q3/Q4 2020
- Direct Nickel pilot plant to be assembled and operated at ALS Global

Q1 → 2021
- MHP will be further refined to produce battery chemicals Nickel sulphate and Cobalt sulphate at CSIRO.
- Samples to be provided to potential off-takers

Q1/Q2 → 2021
- Aluminium Hydroxide will be further refined to produce 4N HPA.
- Samples to be provided to potential off-takers

Q1/Q2 2021
- Haematite will be used for iron collaboration with Sun Metals (wholly owned subsidiary of Korea Zinc)

For personal use only
ROBUST FINANCIALS: Base Case EBITDA of AUD 261m/a

Key Physical Outputs

<table>
<thead>
<tr>
<th>Product</th>
<th>Annual Production (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel Sulphate</td>
<td>26,400 t</td>
</tr>
<tr>
<td>Cobalt Sulphate</td>
<td>3,100 t</td>
</tr>
<tr>
<td>High Purity Alumina (4N) HPA</td>
<td>4,000 t</td>
</tr>
<tr>
<td>Haematite</td>
<td>327,700 t</td>
</tr>
<tr>
<td>Magnesia</td>
<td>20,100 t</td>
</tr>
</tbody>
</table>

Capital and Operating Costs

- Assumed 0.68 AUD:USD
- Capex (excluding contingency): AUD 554m
- Contingency: AUD 96m
- Operating Expenditure: AUD 163m/a

Key Metric Units

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Base Case</th>
<th>Spot Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel Price</td>
<td>US$/lb</td>
<td>7.00</td>
<td>5.70</td>
</tr>
<tr>
<td>Nickel Sulphate Premium</td>
<td>US$/lb</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Cobalt Price</td>
<td>US$/lb</td>
<td>25.00</td>
<td>14.15</td>
</tr>
<tr>
<td>HPA Price</td>
<td>US$/t</td>
<td>25,000</td>
<td>20,000</td>
</tr>
<tr>
<td>EBITDA</td>
<td>AUD (m)</td>
<td>261</td>
<td>211</td>
</tr>
<tr>
<td>Post Tax NPV</td>
<td>AUD (m)</td>
<td>1,470</td>
<td>1,080</td>
</tr>
<tr>
<td>Post Tax IRR</td>
<td>%</td>
<td>30.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Capital Payback</td>
<td>Years</td>
<td>3.5</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Refer to ASX announcement 7th April 2020
Pathway to Funding

Project Feasibility Stage (current)
- Piloting
- Feasibility studies
- Regulatory approvals
- Secure project partners/offtake

Funding Options
- Traditional equity investors
- Strategic investment by partner/offtaker
- Government grants
- R&D tax incentive

The aim at this stage is to deliver strong shareholder returns by advancing and de-risking the TECH Project.

Project Construction - Funding Options
Achieving success in the project feasibility stage will increase the value of the company and open doors to funding opportunities for project construction.

Debt
- **Project Partners**: Strategic opportunity for a ‘Big Brother’ to be involved in a project that would be a game changer for the nickel industry
- **NAIF**: TECH Project could be suitable for NAIF funding being in Northern Australia and will deliver many social benefits to Townsville and surrounding region
- **Export Finance Australia**: EFA is targeting assistance to critical minerals projects, which the TECH Project will produce
- **Offtake Finance**: Offtake is in high demand given the lack of nickel supply – end users understand the need for project participation or funding to secure offtake
- **International Export Credit Agencies**: Potential to obtain international ECA funding, particularly for plant and equipment being sourced from overseas

Equity
- **Project Partners / Offtakers**: Securing project or offtake participation by way of equity investment
- **Institutional Investors**: Traditional equity investors targeting critical minerals investment
- **Green Funds**: Many funds targeting green investments and the emerging EV sector
LOCATION: Ideal Infrastructure Setting

Ideal site (290 Ha) allocated to QPM in the Townsville Industrial Precinct.
- Water pipeline
- Gas pipeline (35 PJ/y capacity – we need 4 PJ/y)
- Electric transmission lines (275kV, 66kV and 11kV)
- Fibre optic communications
- Existing Ross River (140 MW) and Edify (400MW) solar arrays
- Road train access to Townsville Port (Flinders Highway)
- Rail line
- Environment - gently undulating grazing land, sparsely wooded
- Zoned heavy industrial

For personal use only
QPM Product Samples Mixed Hydroxide Precipitate MHP, Cobalt sulphate, Nickel sulphate and Manganese sulphate

CSIRO Waterford (Curtin University Western Australia) Pilot Plant Location

QPM Refinery flowsheet development by CSIRO Exclusive Licence to QPM

QPM Target elemental specifications (%) for battery grade nickel and cobalt sulphate

<table>
<thead>
<tr>
<th>Impurity</th>
<th>Unit</th>
<th>Typical Specification Target</th>
<th>PM1 target</th>
<th>Impurity</th>
<th>Unit</th>
<th>Typical Specification Target</th>
<th>PM1 target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>ppm</td>
<td><5</td>
<td><5</td>
<td>Al</td>
<td>ppm</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>Ca</td>
<td>ppm</td>
<td><10</td>
<td><7</td>
<td>Ca</td>
<td>ppm</td>
<td><25</td>
<td><20</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td><3</td>
<td><1</td>
<td>Cd</td>
<td>ppm</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>Cl</td>
<td>ppm</td>
<td><25</td>
<td><10</td>
<td>Cl</td>
<td>ppm</td>
<td><50</td>
<td><10</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td><50</td>
<td><30</td>
<td>Co</td>
<td>%</td>
<td>>21.0%</td>
<td>>21.0%</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td><3</td>
<td><1</td>
<td>Cr</td>
<td>ppm</td>
<td><3</td>
<td><1</td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
<td>Cu</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
</tr>
<tr>
<td>Fe</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
<td>Fe</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
</tr>
<tr>
<td>Mg</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td>Mg</td>
<td>ppm</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td><5</td>
<td><10</td>
<td>Mn</td>
<td>ppm</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>Na</td>
<td>ppm</td>
<td><25</td>
<td><20</td>
<td>Na</td>
<td>ppm</td>
<td><25</td>
<td><20</td>
</tr>
<tr>
<td>Ni</td>
<td>%</td>
<td>>22.0%</td>
<td>>22.0%</td>
<td>Ni</td>
<td>ppm</td>
<td><50</td>
<td><30</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
<td>Pb</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
</tr>
<tr>
<td>Si</td>
<td>ppm</td>
<td><10</td>
<td><10</td>
<td>Si</td>
<td>ppm</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
<td>Zn</td>
<td>ppm</td>
<td><5</td>
<td><3</td>
</tr>
<tr>
<td>TOC</td>
<td>ppm</td>
<td><50</td>
<td><50</td>
<td>TOC</td>
<td>ppm</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Water Insol</td>
<td>ppm</td>
<td><100</td>
<td><100</td>
<td>Water Insol</td>
<td>ppm</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Magnetic Sub.</td>
<td>ppb</td>
<td><50</td>
<td><50</td>
<td>Magnetic Sub.</td>
<td>ppb</td>
<td><50</td>
<td><50</td>
</tr>
</tbody>
</table>
Company Comments

Alpha HPA - Most highly valued by the market, so this could assist with financing. Innovative front end involving no mining, with SX recovery. Secretive aspects make it harder to evaluate technical risk.

Altech Chemicals - Most commercially advanced with construction of site facilities, partially financed, but most expensive on capex and opex comparisons.

Queensland Pacific Metals - No mining, off the shelf 3-stage crystallisation that is well-proven, lowest opex and capital, high grade aluminum hydroxide feedstock (by-product) from integrated ore processing plant. Boehmite product option instead of HPA.
OUR HPA ADVANTAGE: Best in the Business

Project Economics Boosted with Aluminum Hydroxide Co-Product
Upgraded to produce High Purity Alumina HPA (4N) in lowest cost quartile

CRU\(^1\) forecast 272,000 tpa of HPA demand by 2028
(i.e. 30% CAGR\(^2\) demand growth by 2028)

- Future LED\(^3\) markets will require higher quality HPA
- LIB\(^4\)’s separators demand 187,000 tpa by 2028
- LED’s demand forecast 85,000 tpa by 2028
- Significant supply deficit forecast

1 Commodity Research Unit (CRU) market analysts
2 Compound Annual Growth Rate (CAGR)
3 Light Emitting Diode (LED)
4 Lithium-Ion Batteries (LIB)

Re-Energising Nickel Production

ASX: PM1
Re-Energising Nickel Production

FAST TRACK PROGRESS: Over the last twelve months

Townsville City Council planning scheme amendment for Lansdown Industrial Precinct - June

Commenced Re-commissioning of Pilot Plant - March

Optimisation to reduce Energy and Water Consumption - February

Combined Robust PFS for (TECH + HPA) Projects - February

Bulk Sample of Ore shipped from New Caledonia - February

Completed HPA Scoping Study with Positive Results - February

Awarded CRC-P Round 8 Federal Government Grant - January

Completed HPA Scoping Study with Positive Results - February

2020

2019

Water Allocation

Strong Financial Results

Diversity of Supply

Federal Government Support

- Ore Supply
- Gas Supply
- Industrial Site
- Road & Rail
- Grid Power
- Financials
- Diversity of Supply
- Federal Government Support

Ore Supply

Gas Supply

Industrial Site

Road & Rail

Grid Power

May - Lycopodium appointed as Lead Engineer for TECH Project PFS

May - Acquisition of Queensland Pacific Metals

May - Acquisition of Queensland Pacific Metals

Nov - Production of 4N (99.99%) HPA at Laboratory Scale

Nov - MoU with Blue Energy for supply of CSG

Oct - Extended Ore Supply Agreement with New Caledonia miners

July - Conditional Land Agreement for Lansdown Industrial Precinct (35km from port)
Target Milestones

Piloting and Feasibility
- Piloting of DNI process on New Caledonian ore to produce MHP, haematite and aluminium hydroxide
- Piloting of process to refine MHP to battery grade nickel sulphate and cobalt sulphate
- Piloting of process to refine aluminium hydroxide to 4N HPA
- Testwork on haematite with Sun Metals
- Firm up project size
- Commencement of Bankable Feasibility Study

Marketing and Offtake:
- Provide samples to potential customers
- Broaden marketing base (current focus has been on Asia)
- Secure project involvement by way of offtake, partnership, investment or funding with end users

Other Project Advancement
- Finalise reservation deed for Lansdown property in Townsville
- Finalise port access
- Arrange access to other supporting infrastructure
- Apply for project of state significance in Queensland
- Commence regulatory approvals
- Evaluate opportunity for commercial use of tailings as potential landfill

For personal use only
Wood Mackenzie predicts production of nickel in chemicals could rise from 211,000 tpa in 2019 to a peak of 450,000 tpa nickel in 2027.

The EV sector could drive demand to reach 800,000 tpa nickel by 2035.

It is feasible that these premiums for nickel sulphate in the battery sector will be available in the years ahead.

The sector’s requirements for higher-purity nickel sulphate will be a key consideration for premiums.

As demand from the electric vehicle (EV) space continues to accelerate, nickel sulphate supply will struggle to meet demand, with output expected to peak in 2027, according to Wood Mackenzie. 8th June 2020.