

ASX ANNOUNCEMENT

23 April 2021

Strong mineralisation intersected in Crow and Aquila

Visible gold intersected again in the McLeod lode at Crow

HERC660DW1 in the McLeod lode at Crow returned:

- 25.0m @ 12.1g/t Au from 164m including 6.0m @ 44.9g/t Au from 178m; and
- 48.7m @ 2.8g/t Au from 195m including 6m @ 9.3g/t Au from 201m and 7.3m @ 5.4g/t Au from 231m.
- This new result is 120m along strike to the east from the previously reported **64m @ 13.4g/t Au** from 141m in HERC238 including **19m @ 42.0g/t Au** from 170m.

Additional significant new resource definition drilling results at Crow include:

- 18m @ 13.5g/t Au from 179m including 6m @ 38.9g/t Au from 180m in HERC664 (McCleod Lode)
- 11.8m @ 6.7g/t Au from 294.3m including 4.7m @ 13.7g/t Au from 300.8m in HERC625D
- 14m @ 3.8g/t Au from 175m including 1m @ 41.0g/t Au from 187m in HERC568
- 11.8m @ 3.3g/t Au from 312m including 2.1m @ 14.6g/t Au from 318m in HERC314D
- 26m @ 2.6g/t Au from 56m including 5m @ 8.7g/t Au from 73m and 13m @ 2.4g/t Au from 112m in HERC661

Significant near surface extensional drilling results in the north of Crow include:

- 62m @ 0.9g/t Au from 25m including 4m @ 3.1g/t Au from 26m in HERC544

Impressive resource definition and extensional drilling at Aquila

Significant new intercepts include:

- 11m @ 10.5g/t Au from 51m including 1m @ 105.5g/t Au in HERC542D
- 44m @ 2.0g/t Au from 48m including 4m @ 6.4g/t Au in HERC650
- **57m @ 1.4g/t Au** from 117m in HERC562

De Grey General Manager Exploration, Phil Tornatora, commented:

"Aquila-Crow is one of the more structurally complex areas at Hemi and has significant gold endowment. The McCleod Lode at Crow has now produced a number of thick, very high grade intersections which add significantly to the resource potential. Improved targeting of these high-grade zones is ongoing as we gain a better understanding of the geological controls. Aquila continues to produce consistent, wide gold intersections throughout the lode, particularly in shallower portions."

De Grey Mining Limited (ASX: DEG, "De Grey", "Company") is pleased to provide the following drilling update at the Hemi Gold Discovery, located approximately 60km south of Port Hedland in Western Australia.

The Aquila and Crow zones are located to the north of the large Brolga intrusion at Hemi. The Aquila and Crow mineralised systems are approximately 1000m E-W, 600m N-S, at least 500m in depth and remains open (Figure 1).

Extensional and infill drilling are ongoing with extensional drilling targeting depth extensions to higher grade mineralisation. Infill resource definition drilling is being conducted at a nominal 40m x 40m spacing to define the overall mineralised system and to provide confidence in the continuity of higher grade lodes. Significant new gold results in drilling are provided in Table 1.

Crow Zone - Resource definition drilling

The most dominant lode within the Crow intrusion is the McLeod lode and is located approximately 200m north of and oblique to the Aquila zone (Figure 1). The McLeod lode is currently defined over 600m in strike, 300m depth, up to 60m true thickness and remains open (Figures 2 and 3). The McLeod lode contains some of the highest grade intercepts in the overall Hemi deposit.

HERC660DW1 is the latest high grade interval (Figure 2) in the McLeod lode at Crow and has intersected strong mineralisation in the diamond tail including visible gold (Figure 3):

- 25.0m @ 12.1g/t Au from 164m including 6.0m @ 44.9g/t Au from 178m; and
- 48.7m @ 2.8g/t Au from 195 including 6m @ 9.3g/t Au from 201m and 7.3m @ 5.4g/t Au from 231m.

This new result extends the high grade portion of McCleod lode a further 40m to the east. Other previously reported high grade intercepts 64m @ 13.4g/t Au from 141m in HERC238 including 19m @ 42.0g/t Au from 170m 33m @ 4.9g/t Au in HERC607, 41m @ 6.8g/t Au in HERC086 and 18m @ 13.5g/t Au from 179m including 6m @ 38.9g/t Au from 180m in HERC664. Geological review is underway to better define the controls on these high grade zones to improve both drill targeting and mineralisation domaining.

Additional significant new intervals in other intersections at Crow (see also Figure 5) include:

- 26m @ 2.6g/t Au from 56m including 5m @ 8.7g/t Au from 73m and 13m @ 2.4g/t Au from 112m in HERC661
- 18m @ 13.5g/t Au from 179m including 6m @ 38.9g/t Au from 180m in HERC664
- 11.8m @ 6.7g/t Au from 294.3m including 4.7m @ 13.7g/t Au from 300.8m in HERC625D
- 14m @ 3.8g/t Au from 175m including 1m @ 41.0g/t Au from 187m in HERC568
- 11.8m @ 3.3g/t Au from 312m including 2.1m @ 14.6g/t Au from 318m in HERC314D
- 28.8m @ 1.6g/t Au from 244.1m including 2m @ 6.3g/t Au from 257m in HERC048D
 - **12.6m @ 2.8g/t Au** from 452m including **1.0m @ 9.3g/t Au** from 458m in HERC358D (see Figure 4)
- 20m @ 1.7g/t Au from 201m including 2m @ 7.5g/t Au in HERC549
- 62m @ 0.9g/t Au from 25m including 4m @ 3.1g/t Au from 26m in HERC544
- 11m @ 3.1g/t Au from 85m and 23m @ 1.4g/t Au from 128m and 5m @ 5.4g/t Au from 205m in HERC561
- 15.7m @ 1.7g/t Au from 176m including 1m @ 12.6g/t Au from 176m in HERC626
- 14m @ 4.0g/t Au from 167m including 1m @ 40.4g/t Au from 170m in HERC638 (see Figure 4)
- 5m @ 1.8g/t Au from 40m and 13m @ 2.4g/t Au from 55m in HERC646

Crow Zone - Extensional drilling

New extensional near surface drill results include:

- 62m @ 0.9g/t Au from 25m including 4m @ 3.1g/t Au from 26m in HERC544.
- 27m @ 0.9g/t Au from 146m in HERC621
 - 20m @ 0.8g/t Au from 90m in HERC545
- 33m @ 0.6g/t Au from 24m and 7m @ 1.8g/t Au from 64m in HERC566

HERC544 has intersected a new lode of mineralisation to the north of Crow, in the footwall of known mineralisation (Figure 1). This lode is yet to be fully delineated and further drilling is planned.

Aquila Zone – Resource definition drilling

Recent resource definition drilling at Aquila has intersected strong mineralisation within the existing mineralised footprint (Figures 1, 4 and 5). Significant new intercepts at Aquila include:

- 11m @ 10.5g/t Au from 51m including 1m @ 105.5g/t Au in HERC542D
- 44m @ 2.0g/t Au from 48m including 4m @ 6.4g/t Au in HERC650
- 23m @ 1.9g/t Au from 173m in HERC634
- **57m @ 1.4g/t Au** from 117m in HERC562 (see Figure 4)
- 25m @ 1.2g/t Au from 56m in HERC631
- 22m @ 1.5g/t Au from 72m in HERC660DW1

These intervals above were intersected in the upper portions of resource definition drill holes targeting the Crow zone and continue to demonstrate high gold endowment near surface at Aguila.

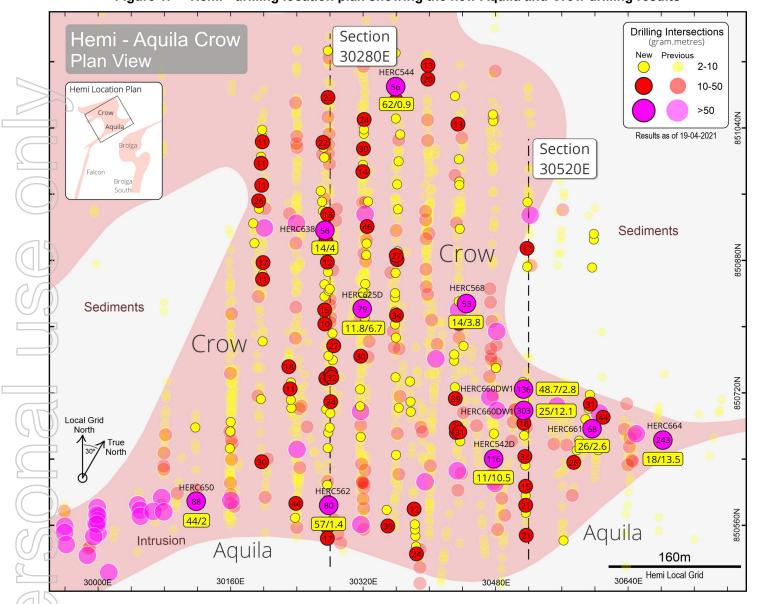
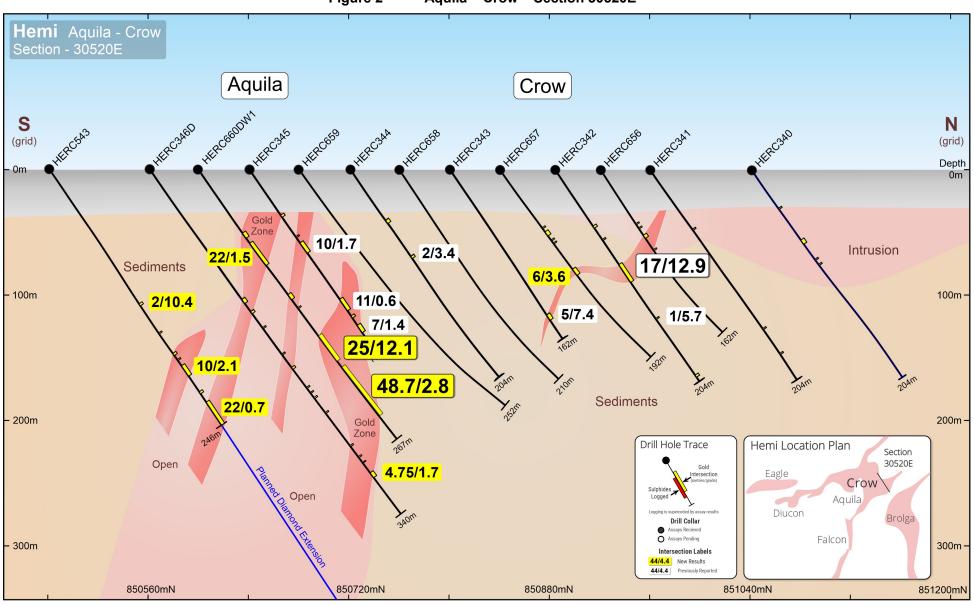



Figure 1: Hemi - drilling location plan showing the new Aquila and Crow drilling results

Figure 2 Aquila – Crow – Section 30520E

AIUO BSN IBUOSIBO IO-

Figure 3: Visible gold at 179.5m in HERC660DW1

Figure 4 Aquila – Crow – Section 30280E

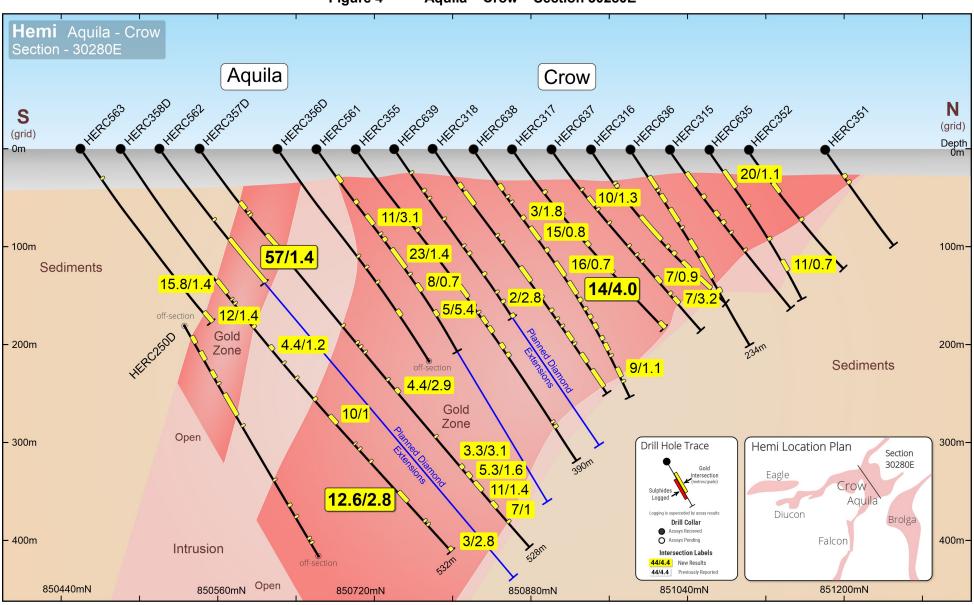
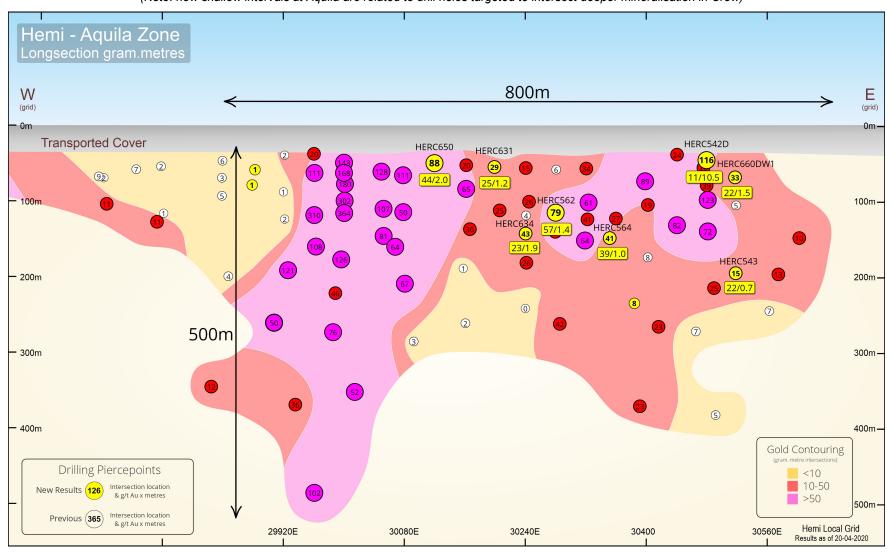



Figure 5: Aquila Longitudinal Projection showing the grade thickness (gram.metres Au) of drill intervals (Note: new shallow intervals at Aquila are related to drill holes targeted to intersect deeper mineralisation in Crow)

or personal use only

This announcement has been authorised for release by the De Grey Board.

For further information, please contact:

Glenn Jardine
Managing Director
+61 8 6117 9328
admin@degreymining.com.au

Andy Beckwith
Technical Director and
Operations Manager
+61 8 6117 9328
admin@degreymining.com.au

Michael Vaughan (Media enquiries) Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Phil Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously released ASX Material References in the financial year 2020/21 that relates to Hemi Prospect include;

- HEMI Major extension, 5 June 2020
- HEMI Broad, high grade extensions at Aquila, 9 June 2020
- Further high grade and expanded footprint at Hemi, 22 June 2020
- High gold recoveries achieved at Hemi, 9 July 2020
- Further extensions confirmed at Brolga, 10 July 2020
- Hemi scale grows with Aquila new extensions, 22 July 2020
- Strong results boost Aquila westerly extension, 5 August 2020
- Aquila mineralisation extends to 400 vertical metres, New lode identified at Crow
- Brolga mineralisation extends north towards Aquila, northeast towards Scooby, 21 August
- Exceptional high grade gold intercept at Crow, 27 August 2020
- Falcon -Major new gold discovery at Hemi, 2 September 2020
- Falcon Drilling Update, 15 September 2020
- Strong Brolga infill and extensions, 25 September 2020.
- Encouraging Extensional and Infill Drilling Results at Aquila and Crow, 7 October 2020
- Thick High Grade near surface hits continue at Falcon, 12 October 2020
- Further positive results extend Aquila and Crow, 29 October 2020
- High-grade extensions at Crow and Aquila, 30 November 2020
- Exploration Update, 4 December 2020
- Strong infill and extensional results at Brolga, 21 December 2020
- Consistent extensive gold endowment at Falcon, 13 January 2021
- Diucon and Eagle: Two new intrusion hosted gold discoveries at Hemi, 29 January 2021
- Further metallurgical testwork confirms high gold recoveries, 16 February 2021
- Major depth extensions and new footwall lodes emerge at Falcon, 23 February 2021
- Impressive resource definition drilling at Brolga, 13 April 2021
- Strong extension to Diucon and Eagle, 15 April 2021

Table 1: Significant new results (>2 gram x m Au)

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC358D	Aquila	167.0	182.8	15.8	1.4	648812	7692371	68	-56	331	532	DD
	HERC358D	Aquila	206.0	208.9	2.9	0.9	648812	7692371	68	-56	331	532	DD
	HERC358D	Aquila	226.0	228.0	2.0	1.0	648812	7692371	68	-56	331	532	DD
	HERC358D	Aquila	253.0	257.4	4.4	1.2	648812	7692371	68	-56	331	532	DD
(HERC540D	Aquila	217.9	232.8	15.0	1.6	648943	7692382	68	-54	327	619	DD
7	incl	Aquila	225.0	226.0	1.0	11.5	648943	7692382	68	-54	327	619	DD
6	HERC540D	Aquila	239.0	242.1	3.1	1.3	648943	7692382	68	-54	327	619	DD
(HERC540D	Aquila	258.8	264.7	5.9	1.4	648943	7692382	68	-54	327	619	DD
	incl	Aquila	259.4	260.2	0.8	7.3	648943	7692382	68	-54	327	619	DD
	HERC540D	Aquila	274.3	275.9	1.7	2.5	648943	7692382	68	-54	327	619	DD
	HERC540D	Aquila	282.0	289.0	6.9	1.2	648943	7692382	68	-54	327	619	DD
0	HERC540D	Aquila	308.0	325.3	17.3	0.7	648943	7692382	68	-54	327	619	DD
	HERC542D	Aquila	51.0	62.0	11.0	10.5	648908	7692601	68	-55	330	298	RC
	incl	Aquila	56.0	57.0	1.0	105.5	648908	7692601	68	-55	330	298	RC
	HERC543	Aquila	129.0	131.0	2.0	10.4	649009	7692508	68	-55	329	246	RC
	HERC543	Aquila	177.0	179.0	2.0	1.0	649009	7692508	68	-55	329	246	RC
	HERC543	Aquila	189.0	199.0	10.0	2.1	649009	7692508	68	-55	329	246	RC
6	HERC543	Aquila	214.0	216.0	2.0	1.5	649009	7692508	68	-55	329	246	RC
6	HERC543	Aquila	224.0	246.0	22.0	0.7	649009	7692508	68	-55	329	246	RC
	HERC562	Aquila	117.0	174.0	57.0	1.4	648792	7692406	68	-55	328	174	RC
/	incl	Aquila	120.0	122.0	2.0	3.6	648792	7692406	68	-55	328	174	RC
	HERC563	Aquila	210.0	222.0	12.0	1.4	648832	7692335	68	-55	333	222	RC
((HERC564	Aquila	162.0	201.0	39.0	1.0	648880	7692411	68	-57	326	216	RC
	HERC564	Aquila	208.0	215.0	7.0	0.8	648880	7692411	68	-57	326	216	RC
(HERC634	Aquila	154.0	162.0	8.0	0.9	648769	7692363	68	-56	330	210	RC
\tilde{z}	HERC634	Aquila	173.0	196.0	23.0	1.9	648769	7692363	68	-56	330	210	RC
	incl	Aquila	179.0	180.0	1.0	5.1	648769	7692363	68	-56	330	210	RC
((incl	Aquila	192.0	193.0	1.0	7.3	648769	7692363	68	-56	330	210	RC
	HERC640D	Aquila	238.4	239.4	0.9	29.0	649032	7692548	68	-56	331	360	DD
((HERC641D	Aquila	213.0	216.4	3.4	2.7	649073	7692478	68	-55	329	385	RC
	HERC650	Aquila	48.0	92.0	44.0	2.0	648624	7692377	68	-55	329	198	RC
\sim	incl	Aquila	50.0	54.0	4.0	6.4	648624	7692377	68	-55	329	198	RC
2	HERC660	Aquila	62.0	67.0	5.0	0.7	648949	7692612	68	-56	327	162	RC
6	HERC660	Aquila	72.0	94.0	22.0	1.5	648949	7692612	68	-56	327	162	RC
	HERC662	Aquila	169.0	177.0	8.0	0.8	649038	7692617	68	-57	330	246	RC
Г	HERC664	McCleod	179.0	197.0	18.0	13.5	649109	7692657	68	-55	330	222	RC
	incl	McCleod	180.0	186.0	6.0	38.9	649109	7692657	68	-55	330	222	RC
	HERC048D	Crow	75.0	81.0	6.0	0.6	648696	7692654	68	-55	333	352	RC
	HERC048D	Crow	87.0	89.0	2.0	1.0	648696	7692654	68	-55	333	352	RC
	HERC048D	Crow	105.0	109.0	4.0	0.6	648696	7692654	68	-55	333	352	RC
	HERC048D	Crow	131.0	138.0	7.0	0.7	648696	7692654	68	-55	333	352	RC
	HERC048D	McCleod	148.0	156.0	8.0	1.1	648696	7692654	68	-55	333	352	RC

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC048D	Crow	205.0	207.0	2.0	1.2	648696	7692654	68	-55	333	352	RC
	HERC048D	Crow	225.0	229.2	4.2	0.7	648696	7692654	68	-55	333	352	DD
/	HERC048D	Crow	244.1	272.9	28.8	1.6	648696	7692654	68	-55	333	352	DD
1	incl	Crow	257.0	259.0	2.0	6.3	648696	7692654	68	-55	333	352	DD
	HERC048D	Crow	299.0	310.0	11.0	0.5	648696	7692654	68	-55	333	352	DD
1	inci	Crow	177.0	180.0	3.0	9.2	648840	7692640	68	-55	329	324	RC
	HERC312D	Crow	195.0	210.3	15.3	0.9	648840	7692640	68	-55	329	324	RC
1	HERC312D	Crow	240.1	243.0	2.9	1.1	648840	7692640	68	-55	329	324	DD
Y	HERC314D	McCleod	252.5	258.9	6.3	2.5	648921	7692503	68	-56	327	433	DD
	HERC314D	McCleod	264.0	265.0	1.0	13.8	648921	7692503	68	-56	327	433	DD
4	HERC314D	McCleod	312.0	323.8	11.8	3.3	648921	7692503	68	-56	327	433	DD
Ų	inel	Crow	318.0	320.1	2.1	14.6	648921	7692503	68	-56	327	433	DD
1	HERC314D	Crow	336.0	341.1	5.1	0.8	648921	7692503	68	-56	327	433	DD
У.	HERC314D	Crow	385.2	388.9	3.7	0.9	648921	7692503	68	-56	327	433	DD
	HERC346D	McCleod	299.0	303.8	4.8	1.7	648969	7692578	68	-56	330	340	DD
L	HERC357D	Crow	260.4	261.5	1.0	3.8	648772	7692441	68	-55	328	529	DD
	HERC357D	McCleod	317.5	321.8	4.4	2.9	648772	7692441	68	-55	328	529	DD
	HERC357D	McCleod	419.7	423.0	3.3	3.1	648772	7692441	68	-55	328	529	DD
1	HERC357D	McCleod	430.0	435.3	5.3	1.6	648772	7692441	68	-55	328	529	DD
5	HERC357D	McCleod	442.0	453.0	11.0	1.4	648772	7692441	68	-55	328	529	DD
1	HERC357D	McCleod	469.0	476.0	7.0	1.0	648772	7692441	68	-55	328	529	DD
Ų	HERC357D	Crow	494.2	495.6	1.3	1.6	648772	7692441	68	-55	328	529	DD
1	HERC358D	Crow	323.0	325.0	2.0	1.3	648812	7692371	68	-56	331	532	DD
(HERC358D	Crow	347.0	357.0	10.0	1.0	648812	7692371	68	-56	331	532	DD
1	HERC358D	McCleod	452.0	464.6	12.6	2.8	648812	7692371	68	-56	331	532	DD
4	incl	Crow	458.0	459.0	1.0	9.3	648812	7692371	68	-56	331	532	DD
1	HERC358D	McCleod	529.0	532.0	3.0	2.8	648812	7692371	68	-56	331	532	DD
	HERC363D	Crow	183.0	184.1	1.1	1.9	648572	7692625	68	-55	324	270	DD
(]	HERC363D	Crow	226.0	232.1	6.0	0.6	648572	7692625	68	-55	324	270	DD
7	HERC532D	Crow	82.0	84.0	2.0	1.0	648633	7692440	68	-56	329	257	DD
1	HERC532D	Crow	115.0	119.0	4.0	1.0	648633	7692440	68	-56	329	257	DD
1	HERC532D	Crow	134.0	138.0	4.0	0.9	648633	7692440	68	-56	329	257	DD
Ļ	HERC540D	McCleod	509.0	518.7	9.6	0.9	648943	7692382	68	-54	327	619	DD
9	HERC540D	McCleod	530.0	538.4	8.4	0.6	648943	7692382	68	-54	327	619	DD
1	HERC540D	McCleod	573.0	576.4	3.4	1.8	648943	7692382	68	-54	327	619	DD
J	HERC542D	Crow	101.0	109.0	8.0	0.8	648908	7692601	68	-55	330	298	RC
Ī	HERC542D	McCleod	229.0	235.5	6.5	1.2	648908	7692601	68	-55	330	298	DD
]	HERC544	Crow	25.0	87.0	62.0	0.9	648581	7692932	67	-55	332	210	RC
ļ	incl	Crow	26.0	30.0	4.0	3.1	648581	7692932	67	-55	332	210	RC
ļ	HERC545	Crow	60.0	65.0	5.0	1.3	648601	7692896	67	-55	331	150	RC
L	HERC545	Crow	90.0	110.0	20.0	0.8	648601	7692896	67	-55	331	150	RC
ļ	HERC545	Crow	120.0	128.0	8.0	0.5	648601	7692896	67	-55	331	150	RC
	HERC546	Crow	59.0	65.0	6.0	1.2	648642	7692827	67	-55	333	204	RC

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC546	Crow	101.0	111.0	10.0	0.9	648642	7692827	67	-55	333	204	RC
	HERC546	Crow	154.0	156.0	2.0	1.3	648642	7692827	67	-55	333	204	RC
	HERC547	Crow	35.0	52.0	17.0	0.9	648681	7692757	67	-55	336	252	RC
	incl	Crow	35.0	36.0	1.0	6.2	648681	7692757	67	-55	336	252	RC
	HERC547	Crow	59.0	60.0	1.0	2.2	648681	7692757	67	-55	336	252	RC
	HERC547	Crow	136.0	142.0	6.0	0.9	648681	7692757	67	-55	336	252	RC
7	HERC548	Crow	48.0	49.0	1.0	2.4	648721	7692687	68	-56	332	294	RC
	HERC548	McCleod	74.0	76.0	2.0	2.9	648721	7692687	68	-56	332	294	RC
	HERC548	Crow	103.0	105.0	2.0	1.6	648721	7692687	68	-56	332	294	RC
	HERC548	Crow	111.0	114.0	3.0	1.2	648721	7692687	68	-56	332	294	RC
	HERC548	Crow	155.0	156.0	1.0	4.6	648721	7692687	68	-56	332	294	RC
	HERC548	Crow	176.0	215.0	39.0	0.7	648721	7692687	68	-56	332	294	RC
	HERC549	Crow	72.0	75.0	3.0	1.2	648761	7692619	67	-56	331	228	RC
	HERC549	McCleod	156.0	159.0	3.0	2.3	648761	7692619	67	-56	331	228	RC
	HERC549	McCleod	201.0	221.0	20.0	1.7	648761	7692619	67	-56	331	228	RC
	_incl	Crow	202.0	204.0	2.0	7.5	648761	7692619	67	-56	331	228	RC
	HERC561	Crow	35.0	42.0	7.0	0.7	648712	7692544	68	-55	331	252	RC
	HERC561	Crow	66.0	69.0	3.0	1.2	648712	7692544	68	-55	331	252	RC
	HERC561	Crow	85.0	96.0	11.0	3.1	648712	7692544	68	-55	331	252	RC
	HERC561	Crow	128.0	151.0	23.0	1.4	648712	7692544	68	-55	331	252	RC
7	incl	Crow	129.0	132.0	3.0	5.6	648712	7692544	68	-55	331	252	RC
	HERC561	McCleod	172.0	180.0	8.0	0.7	648712	7692544	68	-55	331	252	RC
	HERC561	McCleod	205.0	210.0	5.0	5.4	648712	7692544	68	-55	331	252	RC
(HERC566	Crow	24.0	57.0	33.0	0.6	648606	7692967	67	-55	330	150	RC
7	HERC566	Crow	64.0	71.0	7.0	1.8	648606	7692967	67	-55	330	150	RC
(HERC567	Crow	74.0	77.0	3.0	2.9	648659	7692953	67	-55	321	156	RC
\mathcal{C}	HERC568	McCleod	98.0	102.0	4.0	2.4	648821	7692677	68	-54	329	198	RC
	HERC568	Crow	175.0	189.0	14.0	3.8	648821	7692677	68	-54	329	198	RC
	incl	Crow	187.0	188.0	1.0	41.0	648821	7692677	68	-54	329	198	RC
	HERC621	Crow	45.0	53.0	8.0	1.8	648595	7692827	67	-55	331	228	RC
	incl	Crow	45.0	46.0	1.0	9.2	648595	7692827	67	-55	331	228	RC
	HERC621	Crow	60.0	66.0	6.0	0.7	648595	7692827	67	-55	331	228	RC
)	HERC621	Crow	78.0	116.0	38.0	0.8	648595	7692827	67	-55	331	228	RC
	HERC621	Crow	128.0	130.0	2.0	1.6	648595	7692827	67	-55	331	228	RC
	HERC621	Crow	135.0	141.0	6.0	1.3	648595	7692827	67	-55	331	228	RC
	HERC621	Crow	146.0	173.0	27.0	0.9	648595	7692827	67	-55	331	228	RC
	HERC625D	Crow	47.0	50.0	3.0	0.7	648754	7692550	68	-56	329	399	RC
	HERC625D	Crow	108.0	112.0	4.0	0.7	648754	7692550	68	-56	329	399	RC
	HERC625D	Crow	141.0	146.0	5.0	0.5	648754	7692550	68	-56	329	399	RC
	HERC625D	McCleod	208.0	209.0	1.0	29.9	648754	7692550	68	-56	329	399	DD
	HERC625D	McCleod	294.3	306.1	11.8	6.7	648754	7692550	68	-56	329	399	DD
	incl	Crow	300.8	305.5	4.7	13.6	648754	7692550	68	-56	329	399	DD
	HERC625D	Crow	328.6	334.0	5.4	0.8	648754	7692550	68	-56	329	399	DD

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC626	Crow	66.0	69.0	3.0	1.0	648552	7692660	67	-55	330	246	RC
	HERC626	Crow	167.0	171.0	4.0	2.2	648552	7692660	67	-55	330	246	RC
	HERC626	Crow	176.0	191.0	15.0	1.7	648552	7692660	67	-55	330	246	RC
	incl	Crow	176.0	177.0	1.0	12.6	648552	7692660	67	-55	330	246	RC
	HERC627	Crow	45.0	48.0	3.0	3.8	648472	7692798	67	-56	331	150	RC
6	HERC627	Crow	53.0	60.0	7.0	0.8	648472	7692798	67	-56	331	150	RC
7/	HERC627	Crow	68.0	70.0	2.0	1.4	648472	7692798	67	-56	331	150	RC
6	HERC628	Crow	89.0	98.0	9.0	1.2	648513	7692729	67	-56	330	180	RC
6	HERC628	Crow	132.0	140.0	8.0	1.4	648513	7692729	67	-56	330	180	RC
	HERC628	Crow	148.0	149.0	1.0	5.3	648513	7692729	67	-56	330	180	RC
	HERC629	Crow	42.0	52.0	10.0	0.9	648593	7692590	68	-55	330	300	RC
	HERC629	McCleod	177.0	187.0	10.0	1.1	648593	7692590	68	-55	330	300	RC
	HERC629	McCleod	192.0	198.0	6.0	0.9	648593	7692590	68	-55	330	300	RC
\mathcal{L}	HERC629	McCleod	220.0	237.0	17.0	1.0	648593	7692590	68	-55	330	300	RC
	HERC630	Crow	60.0	65.0	5.0	1.5	648633	7692522	68	-56	327	198	RC
	HERC631	Crow	56.0	81.0	25.0	1.2	648673	7692453	68	-55	329	216	RC
	HERC632	Crow	109.0	111.0	2.0	1.2	648687	7692506	68	-55	328	216	RC
	HERC632	Crow	125.0	126.0	1.0	4.0	648687	7692506	68	-55	328	216	RC
	HERC632	Crow	144.0	149.0	5.0	2.2	648687	7692506	68	-55	328	216	RC
5	HERC632	Crow	182.0	197.0	15.0	1.2	648687	7692506	68	-55	328	216	RC
	HERC633	Crow	94.0	95.0	1.0	3.3	648666	7692541	68	-56	326	204	RC
_(HERC635	Crow	27.0	47.0	20.0	1.1	648511	7692891	67	-55	329	180	RC
	incl	Crow	27.0	28.0	1.0	12.3	648511	7692891	67	-55	329	180	RC
	HERC635	Crow	136.0	147.0	11.0	0.7	648511	7692891	67	-55	329	180	RC
	HERC637	Crow	62.0	72.0	10.0	1.3	648591	7692751	67	-55	330	240	RC
(HERC637	Crow	169.0	176.0	7.0	0.9	648591	7692751	67	-55	330	240	RC
7	HERC637	Crow	190.0	192.0	2.0	1.3	648591	7692751	67	-55	330	240	RC
	HERC637	Crow	197.0	204.0	7.0	3.2	648591	7692751	67	-55	330	240	RC
	HERC638	Crow	45.0	51.0	6.0	0.8	648631	7692683	67	-55	331	300	RC
	HERC638	McCleod	85.0	88.0	3.0	1.8	648631	7692683	67	-55	331	300	RC
	HERC638	McCleod	99.0	114.0	15.0	0.8	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	126.0	129.0	3.0	1.4	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	143.0	159.0	16.0	0.7	648631	7692683	67	-55	331	300	RC
7	incl	Crow	147.0	148.0	1.0	4.1	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	167.0	181.0	14.0	4.0	648631	7692683	67	-55	331	300	RC
	incl	Crow	170.0	171.0	1.0	40.4	648631	7692683	67	-55	331	300	RC
Г	incl	Crow	175.0	176.0	1.0	9.6	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	217.0	222.0	5.0	0.6	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	240.0	247.0	7.0	0.6	648631	7692683	67	-55	331	300	RC
	HERC638	Crow	268.0	277.0	9.0	1.1	648631	7692683	67	-55	331	300	RC
	HERC639	Crow	51.0	53.0	2.0	1.0	648671	7692613	68	-56	331	210	RC
	HERC639	McCleod	190.0	192.0	2.0	2.8	648671	7692613	68	-56	331	210	RC
	HERC640D	Crow	261.0	263.0	2.0	1.2	649032	7692548	68	-56	331	360	DD

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC640D	Crow	280.0	281.0	1.0	4.9	649032	7692548	68	-56	331	360	DD
	HERC640D	Crow	319.1	322.1	2.9	1.6	649032	7692548	68	-56	331	360	DD
	HERC640D	Crow	339.0	341.0	2.0	2.3	649032	7692548	68	-56	331	360	DD
	HERC643	Crow	57.0	66.0	9.0	0.7	648705	7692954	67	-55	332	150	RC
	HERC643	Crow	73.0	79.0	6.0	0.6	648705	7692954	67	-55	332	150	RC
	HERC644	Crow	28.0	38.0	10.0	0.7	648699	7692884	67	-55	329	180	RC
77	HERC644	Crow	78.0	81.0	3.0	0.7	648699	7692884	67	-55	329	180	RC
	HERC644	Crow	145.0	159.0	14.0	0.9	648699	7692884	67	-55	329	180	RC
	HERC645	Crow	70.0	76.0	6.0	0.9	648740	7692814	67	-55	329	228	RC
	HERC645	Crow	156.0	164.0	8.0	0.7	648740	7692814	67	-55	329	228	RC
	HERC646	Aquila	40.0	45.0	5.0	1.8	648860	7692609	67	-55	328	234	RC
	HERC646	Aquila	55.0	68.0	13.0	2.4	648860	7692609	67	-55	328	234	RC
	incl	Crow	56.0	57.0	1.0	12.7	648860	7692609	67	-55	328	234	RC
Y	HERC646	Crow	227.0	231.0	4.0	0.6	648860	7692609	67	-55	328	234	RC
	HERC648	Crow	75.0	84.0	9.0	1.1	648583	7692446	68	-57	327	120	RC
	HERC656	Crow	62.0	65.0	3.0	1.1	648789	7692889	67	-57	331	162	RC
	HERC657	Crow	61.0	65.0	4.0	0.6	648829	7692820	67	-55	330	192	RC
	HERC657	Crow	98.0	103.0	5.0	2.3	648829	7692820	67	-55	330	192	RC
	HERC659	McCleod	80.0	84.0	4.0	1.6	648909	7692681	68	-55	332	252	RC
	(incl)	Crow	86.0	90.0	4.0	5.2	648949	7692612	68	-56	327	162	RC
7	HERC660	Crow	123.0	128.0	5.0	0.5	648949	7692612	68	-56	327	162	RC
2	HERC660	McCleod	139.0	162.0	23.0	0.8	648949	7692612	68	-56	327	162	RC
	HERC660DW1	McCleod	164.0	189.0	25.0	12.1	648949	7692612	68	-56	327	267	DD
	incl	Crow	164.0	168.4	4.4	3.0	648949	7692612	68	-56	327	267	DD
	incl	Crow	178.0	184.0	6.0	44.9	648949	7692612	68	-56	327	267	DD
	HERC660DW1	McCleod	195.0	243.7	48.7	2.8	648949	7692612	68	-56	327	267	DD
7	incl	Crow	201.0	207.0	6.0	9.3	648949	7692612	68	-56	327	267	DD
	incl	Crow	231.0	238.2	7.3	5.4	648949	7692612	68	-56	327	267	DD
	HERC661	Crow	56.0	82.0	26.0	2.6	648999	7692688	68	-55	327	204	RC
	incl	Crow	73.0	78.0	5.0	8.7	648999	7692688	68	-55	327	204	RC
	HERC661	McCleod	112.0	125.0	13.0	2.4	648999	7692688	68	-55	327	204	RC
	HERC661	Crow	136.0	138.0	2.0	1.2	648999	7692688	68	-55	327	204	RC
	HERC662	McCleod	182.0	190.0	8.0	0.9	649038	7692617	68	-57	330	246	RC
7	HERC662	McCleod	238.0	246.0	8.0	5.5	649038	7692617	68	-57	330	246	RC
	incl	Crow	245.0	246.0	1.0	38.5	649038	7692617	68	-57	330	246	RC
	HERC680	Crow	52.0	56.0	4.0	0.6	648559	7692967	67	-54	332	210	RC
	HERC682	Crow	50.0	55.0	5.0	0.6	648879	7692895	67	-56	330	162	RC
	HERC682	Crow	64.0	65.0	1.0	2.8	648879	7692895	67	-56	330	162	RC
	HERC683	Crow	62.0	64.0	2.0	1.1	648899	7692859	68	-55	327	180	RC
	HERC688	Crow	46.0	54.0	8.0	0.5	648801	7692549	68	-54	332	222	RC
	HERC688	Crow	137.0	141.0	4.0	0.5	648801	7692549	68	-54	332	222	RC

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 All drilling and sampling was undertaken in an industry standard manner Core samples were collected with a diamond rig drilling mainly NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. Sample weights ranged from 2-4kg RC holes were sampled on a 1m basis with samples collected from a cone splitter mounted on the drill rig cyclone. 1m sample ranges from a typical 2.5-3.5kg Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Sample weights ranges from around 1-3kg. The independent laboratory pulverises the entire sample for analysis as described below. Industry prepared independent standards are inserted approximately 1 in 20 samples. The independent laboratory then takes the samples which are dried, split, crushed and pulverized prior to analysis as described below. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this
		type of drilling. Diamond core and RC samples are appropriate for use in a resource estimate.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	(51mm), HQ3 (61mm), PQ (85mm).

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination. No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 The entire hole has been geologically logged and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed RC and diamond sample results are appropriate for use in a resource estimation, except where sample recovery is poor. The aircore results provide a good indication of mineralisation but are not used in resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core samples were collected with a diamond drill rig drilling NQ2, HQ3 or PQ diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. RC sampling was carried out by a cone splitter on the rig cyclone and drill cuttings were sampled on a 1m basis in bedrock and 4m composite basis in cover. Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Industry prepared independent standards are inserted approximately 1 in 20 samples. Each sample was dried, split, crushed and pulverised. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling Core and RC samples are appropriate for use in a resource estimate. Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but are not generally used in resource estimates.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	commercial independent laboratory in Perth, Australia.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Sample results have been merged by the company's database consultants. Results have been uploaded into the company database, checked and verified.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC drill hole collar locations are located by DGPS to an accuracy of +/-10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are given in GDA94 zone 50 projection Diagrams and location table are provided in the report Topographic control is by detailed airphoto and Differential GPS data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill spacing varies from 40m x 40m to 320m x 80m.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	The drilling is believed to be approximately perpendicular to the strike of mineralisation where known and therefore the sampling is considered representative

Criteria	JORC Code explanation	Commentary
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 of the mineralised zone. In some cases, drilling is not at right angles to the dip of mineralised structures and as such true widths are less than downhole widths. This is allowed for when geological interpretations are completed.
Sample security	The measures taken to ensure sample security.	Samples were collected by company personnel and delivered direct to the laboratory via a transport contractor.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits have been completed. Review of QAQC data has been carried out by database consultants and company geologists.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Drilling occurs on various tenements held by De Grey Mining Ltd or its 100% owned subsidiaries. The Hemi Prospect is approximately 60km SSW of Port Hedland.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	occurred on the tenement prior to De Grey Mining. Prior to the Hemi discovery, De Grey completed programs of airborne aeromagnetics/radiometrics, surface geochemical sampling and wide spaced aircore and RAB drilling. Limited previous RC drilling was carried out at the Scooby Prospect.
Geology	Deposit type, geological setting and style of mineralisation.	The mineralisation style is not well understood to date but is thought to be hydrothermally emplaced gold mineralisation within structures and intrusions. Host rocks comprise igneous rocks intruding Mallina Basin metasediments. Style is similar to some other Western Australian gold deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this 	Drill hole location and directional information provide in the report.

Criteria	JORC Code explanation	Commentary
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 grade of 0.5g/t gold with an internal dilution of 4m maximum. Higher grade intervals included in the above intercepts are reported at a 3g/t Au lower cut with an internal dilution of 2m maximum. Intercepts are length weighted averaged. No maximum cuts have been made.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to 	 The drill holes are interpreted to be approximately perpendicular to the strike of mineralisation.
widths and intercept lengths	 the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	dip of mineralisation and true widths are less than downhole widths. Estimates of true widths will only be possible when all
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	figures and all significant results are provided in this report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	undertaken to test for strike extensions to mineralisation.Programs of follow up RC and diamond