

ASX RELEASE

7 February 2023

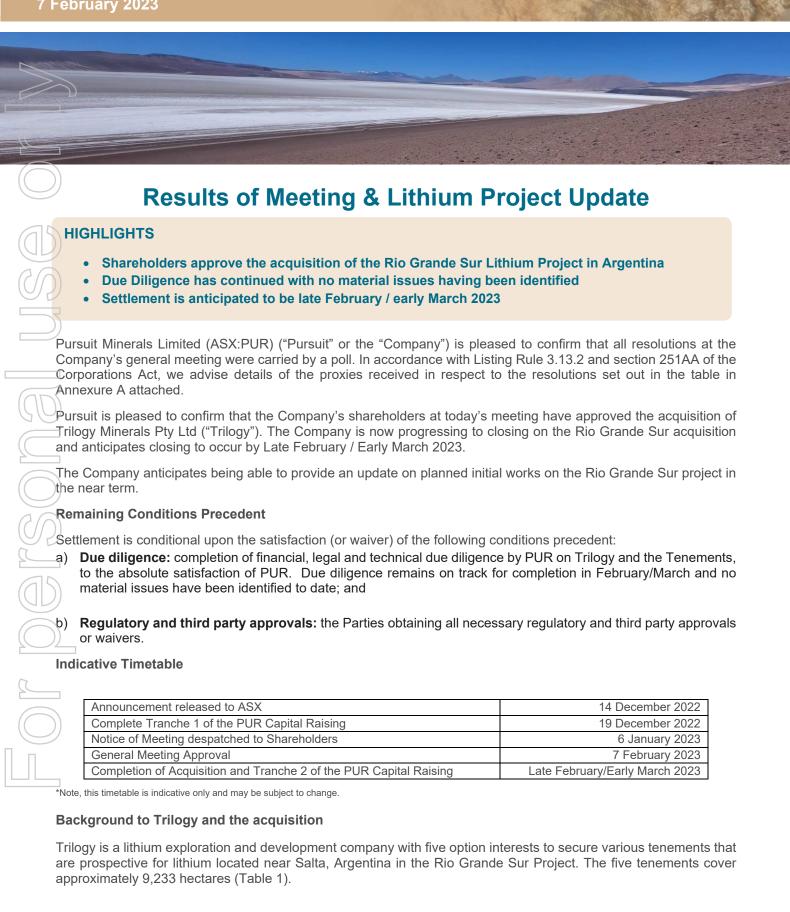


Figure 2: Trilogy Li brine leases, Rio Grande salar

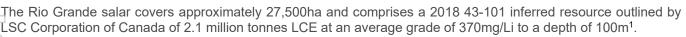

		Tenement	Hectares	File Number	Option Exercise Price	Option Exercise Date
	1	Maria Magdalena	73.26	3571		Acquired
	2	Isabel Segunda*	59.25	16626		Acquired
	3	Sal Rio 02*	298.26	21942		Acquired
	4	Sal Rio 01*	142.19	21941		Acquired
2	5	Cateo	8,660.00	23704	\$2,500,000	28 Feb 2023
		Total	9,232.96	USD	\$2,500,000	
				AUD (0.69)	\$3,625,310	

Table One - Tenement Schedule

Figure 1: Rio Grande salar location, Salta Province, Argentina

Rio Grande Sur Project

Argentina

The mineral resource compiled in accordance with Canadian National Instrument 43-101, is a foreign mineral resource estimate and it was not compiled in accordance with the JORC code. The Competent Person has not done sufficient work to classify this foreign mineral resource estimate as a Mineral Resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign mineral resource estimate will be able to be reported as Mineral Resources in accordance with the JORC code.

A section of the Rio Grande Sur Project tenements (~9,233ha) are located within this resource area (Figure 2). The closest major Argentinian city-Salta is located 280km from the site. The Trilogy Project also has easy access to the Chilean port of Antofagasta located 336km from the border crossing of Socompa, 40km North of the Rio Grande Sur Project. Antofagasta also offers port and rail facilities and a full suite of mining services.

Trilogy has outlined a detailed exploration program to explore the tenements in order to outline a JORC compliant resource for the project.

During the quarter, Trilogy raised \$8m and successfully acquired four of the five project tenements (Table 1), meeting a significant condition precedent. Trilogy and its team have experience in managing similar operations to the Rio Grande Sur.

PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007

T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

^{1.} see ASX release 14/12/2022 Pursuit to Acquire Lithium Brine Project in Argentina. The Company is not aware of any new information or data that materially affects the information included in the referenced ASX announcement and confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

Post completion of the acquisition, Pursuit intends to undertake further exploration work to determine the lithium brine resource, the effective recovery of brine and the economic viability of subsequent mining and refining operations.

As noted in a previous Pursuit announcement¹, the Salar Rio Grande has been explored for several years by different companies, including LSC Lithium Inc and ADY Resources. As a result, exploration information within the Salar itself is of relatively high quality and in the public domain.

Pursuit's partner Trilogy Minerals has experience in exploration and management of Argentinian Lithium brine operations similar to the Rio Grande Sur resource. Pursuit's key technical and operational personnel propose to shortly undertake a site visit as part of the due diligence process.

Figure 3. Geologist within Rio Grande Sur Project, on the border of the Rio Grande Salar during site visit December 2022.

his release was approved by the Board.

For more information about Pursuit Minerals and its projects, contact:

Bob Affleck Managing Director boba@pursuitminerals.com.au T: +61 419 908 302 Mark Freeman Finance Director <u>markf@pursuitminerals.com.au</u> T: + 61 412 692 146

Competent Person's Statement

Statements contained in this announcement relating to exploration results in respect of the Rio Grande Salar Project, are based on, and fairly represents, information and supporting documentation prepared by Dr. Brian Luinstra, BSc honours (Geology), PhD (Earth Sciences), MAIG, PGeo (Ontario). Dr Luinstra is a Principal Consultant of SRK Consulting (Australasia) Pty Ltd and a consultant to the Company. Dr. Luinstra has sufficient relevant experience in relation to the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Luinstra consents to the use of this information in this announcement in the form and context in which it appears. Mr Luinstra confirms that the information in this announcement provided under listing rules 5.12 is an accurate presentation of the available data and studies for the material mining project.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of Pursuit Minerals Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forwardlooking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's

projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

Glossary

ng d Drilling nated sulphides tic brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	surface through the inner tube and then the blade type bit. Diamond Drilling is the process of drilling bo a small diameter core of rock from the orebo structural, and mineralogical studies of the . Sulphides throughout the rock mass – not ji Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit who Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	arough a sampling system. preholes using bits inset with dy, geologists can analyse to rock. oined together and not cond ned by later mineralising ev- rom molten magma below th Li leached from surrounding lifferent rock types to aid ac- antural time variations of to antural time variations of to antural time variations of to antural sulphide species ting rocks due to changes in ere rock structure controls to to been from orogenic deposi- ive rock,	rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
nated sulphides tic brine ochemistry telluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	blade type bit. Diamond Drilling is the process of drilling bo a small diameter core of rock from the orebo structural, and mineralogical studies of the Sulphides throughout the rock mass – not ji Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in o A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of v The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	areholes using bits inset with dy, geologists can analyse to rock. oined together and not conc ned by later mineralising ev- com molten magma below the i leached from surrounding lifferent rock types to aid ac anatural time variations of to and infer deep seated structure arious sulphide species ting rocks due to changes in ere rock structure controls to been from orogenic deposi- ive rock,	h diamonds as the rock-cutting tool. By withdraw the core by chemical assay and conduct petrolo ductive rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas theres in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
nated sulphides tic brine ochemistry telluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Diamond Drilling is the process of drilling bo a small diameter core of rock from the orebo structural, and mineralogical studies of the Sulphides throughout the rock mass – not ji Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in or A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of vi The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	bdy, geologists can analyse t rock. oined together and not conc ned by later mineralising ev rom molten magma below ti i leached from surrounding lifferent rock types to aid ac a natural time variations of t and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	the core by chemical assay and conduct petrolo ductive rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas the Earth's magnetic and electric field to meas in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
nated sulphides tic brine ochemistry telluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	a small diameter core of rock from the orebon structural, and mineralogical studies of the Sulphides throughout the rock mass – not ju Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in or A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit whh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	bdy, geologists can analyse t rock. oined together and not conc ned by later mineralising ev rom molten magma below ti i leached from surrounding lifferent rock types to aid ac a natural time variations of t and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	the core by chemical assay and conduct petrolo ductive rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas the Earth's magnetic and electric field to meas in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
tic brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	structural, and mineralogical studies of the Sulphides throughout the rock mass – not ju Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit whi Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	rock. oined together and not conc ned by later mineralising ever rom molten magma below th i leached from surrounding lifferent rock types to aid ac e natural time variations of t and infer deep seated structure arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi- ive rock,	ductive rents the surface of the Earth procks ccurate logging by geologists the Earth's magnetic and electric field to meas the Earth's magnetic and electric field to meas the Earth's magnetic and delectric field to meas the transport and deposition of mineralised flu					
tic brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Sulphides throughout the rock mass – not ji Mineralisation forming after rocks were form Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit whi Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	oined together and not cono ned by later mineralising ever rom molten magma below ti i leached from surrounding lifferent rock types to aid ac matural time variations of ti and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi ive rock,	rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
tic brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Mineralisation forming after rocks were for Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in o A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	ned by later mineralising ever rom molten magma below ti i leached from surrounding lifferent rock types to aid ac matural time variations of ti and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi- ive rock,	rents the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Body of igneous rock that has crystallized fi Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of ver The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit who Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	rom molten magma below ti i leached from surrounding lifferent rock types to aid ac- i natural time variations of ti and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi- ive rock,	the surface of the Earth grocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
brine ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of ver The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit who Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	i leached from surrounding lifferent rock types to aid ac natural time variations of to and infer deep seated structur arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi ive rock,	g rocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
ochemistry otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Salt rich groundwater containing enriched L Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of ver The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit who Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	i leached from surrounding lifferent rock types to aid ac natural time variations of to and infer deep seated structur arious sulphide species ting rocks due to changes i ere rock structure controls to been from orogenic deposi ive rock,	g rocks ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	Study of common elemental signatures in of A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of ve The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit who Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	lifferent rock types to aid ac natural time variations of t ind infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	ccurate logging by geologists the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
otelluric traverses Sulphides rphism c Gold Deposit te allic mineralisation ite	A passive geophysical method which uses the electrical resistivity of the sub-surface a The majority of the rock mass consists of v The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	natural time variations of t ind infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	the Earth's magnetic and electric field to meas tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
Sulphides rphism c Gold Deposit te allic mineralisation ite	the electrical resistivity of the sub-surface a The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consisti	and infer deep seated structu arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	tures in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
rphism c Gold Deposit te allic mineralisation ite	The majority of the rock mass consists of va The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consisti	arious sulphide species ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	in heat and/or pressure and/or the introductio the transport and deposition of mineralised flu					
rphism c Gold Deposit te allic mineralisation ite	The solid state recrystallisation of pre-exist fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	ting rocks due to changes i ere rock structure controls t been from orogenic deposi ive rock,	the transport and deposition of mineralised flu					
c Gold Deposit te allic mineralisation ite	fluids, i.e. without melting A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	ere rock structure controls t been from orogenic deposi ive rock,	the transport and deposition of mineralised flu					
te allic mineralisation ite	A type of hydrothermal mineral deposit wh Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	been from orogenic deposi ive rock,						
te allic mineralisation ite	Over 75% of all gold mined by humans has Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	been from orogenic deposi ive rock,						
allic mineralisation ite	Exceptionally coarse-grained granitic intrus Deposits which contain different elements in A coarse-grained, igneous rock consistin	ive rock,	its .					
allic mineralisation ite	Deposits which contain different elements in A coarse-grained, igneous rock consisting							
ite	A coarse-grained, igneous rock consisti	n economic concentrations						
20	accessories	A coarse-grained, igneous rock consisting mainly of pyroxenes. It may contain biotite, hornblende, or olivine						
na	accessories. Reverse Circulation drilling, or RC drilling, is a method of drilling which uses dual wall drill rods that consist of an out drill rod with an inner tube. These hollow inner tubes allow the drill cuttings to be transported back to the surface in							
ng								
	continuous, steady flow.							
	Rare earth element,							
<u>,</u>	Saprolite is a chemically weathered rock. Sa	aprolites form in the lower zo	ones of soil profiles and represent deep weathe					
	of bedrock.		· · · · · · · · · · · · · · · · · · ·					
s	Various chemical compounds of sulphur an	d metals						
			vroxenites and peridotites both are known to					
			,					
ation Abb	previation meaning	Abbreviation	Abbreviation meaning					
		Li	Lithium					
Gol	d	Мо	Molybdenum					
			Nickel					
			Lead					
			Palladium Borto por million					
			Parts per million					
			Platinum					
			Rare Earth Element					
Bisr	nuth	Sb	Antimony					
	on	Те	Tellurium					
Bor								
	vn Hole Electro-Magnetic surveying	Zn	Zinc					
Dov		Zn VHMS						
Dov Pota	vn Hole Electro-Magnetic surveying assium	VHMS	Volcanic Hosted Massive Sulphide					
Dov Pota Gra	vn Hole Electro-Magnetic surveying							
6	Silv Gol Ars: Cob Chr Cae Cer Cop Bisr	continuous, steady flow. Rare earth element, Saprolite is a chemically weathered rock. Sa of bedrock. es Various chemical compounds of sulphur an fic Very low silica content igneous and metan significant Ni-Cu-PGE deposits	continuous, steady flow. Rare earth element, Saprolite is a chemically weathered rock. Saprolites form in the lower zo of bedrock. es Various chemical compounds of sulphur and metals Various chemical compounds of sulphur and metals Very low silica content igneous and metamorphic rocks – including py significant Ni-Cu-PGE deposits iation Abbreviation meaning Abbreviation Silver Li Gold Mo Arsenic Ni Cobalt Pb Chromium Pd Caesium Pd Cerium, a rare earth Pt Copper Bismuth Silver REE					

J	Abbreviation	Abbreviation meaning	Abbreviation	Abbreviation meaning
_	Ag	Silver	Li	Lithium
-	Au	Gold	Мо	Molybdenum
	As	Arsenic	Ni	Nickel
_	Co	Cobalt	Pb	Lead
	Cr	Chromium	Pd	Palladium
	Cs	Caesium	ррт	Parts per million
\mathcal{A}	Ce	Cerium, a rare earth	Pt	Platinum
\leq	Cu	Copper	REE	Rare Earth Element
\sim	Bi	Bismuth	Sb	Antimony
	В	Boron	Те	Tellurium
D	DHEM	Down Hole Electro-Magnetic surveying	Zn	Zinc
	κ	Potassium	VHMS	Volcanic Hosted Massive Sulphide
-	g/t	Grams per ton	W	Tungsten
5	La	Lanthanum	Y	Yttrium

Disclosure of Proxy Votes

Pursuit Minerals Limited

General Meeting

Tuesday, 07 February 2023

th accordance with section 251AA of the Corporations Act 2001, the following information is provided in relation to resolutions put to members at the meeting.

C a'					Proxy	Votes	Poll Results (if applicable)			
	Resolution	Decided by Show of Hands (S) or Poll (P)	Total Number of Proxy Votes exercisable by proxies validly appointed	FOR	AGAINST	ABSTAIN	PROXY'S DISCRETION	FOR	AGAINST	ABSTAIN
(JT)	1 APPROVAL TO ISSUE FOUNDER CONSIDERATION SHARES	Ρ	263,453,114	259,536,975 98.51%	1,887,080 0.72%	1,148,231	2,029,059 0.77%	261,566,034 99.28%	1,887,080 0.72%	1,148,231
	2 APPROVAL TO ISSUE CLASS A CONSIDERATION SHARES	Р	262,672,821	258,607,591 98.45%	2,036,171 0.78%	1,928,524	2,029,059 0.77%	260,636,650 99.22%	2,036,171 0.78%	1,928,524
	3 APPROVAL TO ISSUE CLASS B CONSIDERATION SHARES	Р	262,672,821	258,588,360 98.45%	2,055,402 0.78%	1,928,524	2,029,059 0.77%	260,617,419 99.22%	2,055,402 0.78%	1,928,524
	4 APPROVAL TO ISSUE FOUNDER PERFORMANCE SHARES	Ρ	262,787,821	257,594,868 98.02%	3,144,663 1.20%	1,813,524	2,048,290 0.78%	259,643,158 98.80%	3,144,663 1.20%	1,813,524
	5 CREATION OF A NEW CLASS OF SECURITIES – PERFORMANCE SHARES	Р	262,572,821	258,118,417 98.30%	2,929,663 1.12%	2,028,524	1,524,741 0.58%	259,643,158 98.88%	2,929,663 1.12%	2,028,524
	6 RATIFICATION OF PRIOR ISSUE OF PLACEMENT SHARES – LISTING RULE 7.1	Р	113,005,679	110,347,714 97.65%	1,133,224 1.00%	131,595,666	1,524,741 1.35%	111,872,455 99.00%	1,133,224 1.00%	131,595,666
	7 APPROVAL OF DIRECTOR PARTICIPATION IN PLACEMENT – PETER WALL	Ρ	225,075,623	221,856,628 98.57%	1,794,254 0.80%	35,230,211	1,424,741 0.63%	223,281,369 99.20%	1,794,254 0.80%	35,230,211

					Proxy Votes				Poll Results (if applicable)		
	Resolution	Decided by Show of Hands (S) or Poll (P)	Total Number of Proxy Votes exercisable by proxies validly appointed	FOR	AGAINST	ABSTAIN	PROXY'S DISCRETION	FOR	AGAINST	ABSTAIN	
	8 APPROVAL OF DIRECTOR PARTICIPATION IN PLACEMENT – MARK FREEMAN	Р	225,075,623	221,856,628 98.57%	1,794,254 0.80%	9,657,676	1,424,741 0.63%	223,281,369 99.20%	1,794,254 0.80%	9,657,676	
	9 APPROVAL OF DIRECTOR PARTICIPATION IN PLACEMENT – ROBERT AFFLECK	Р	225,075,623	221,856,628 98.57%	1,794,254 0.80%	5,362,165	1,424,741 0.63%	223,281,369 99.20%	1,794,254 0.80%	5,362,165	
	10 APPROVAL TO ISSUE DIRECTOR OPTIONS – PETER WALL	Р	225,066,099	219,688,195 97.61%	3,953,163 1.76%	39,535,246	1,424,741 0.63%	221,112,936 98.24%	3,953,163 1.76%	39,535,246	
	11 APPROVAL TO ISSUE DIRECTOR OPTIONS – MARK FREEMAN	Р	225,066,099	219,688,195 97.61%	3,953,163 1.76%	39,535,246	1,424,741 0.63%	221,112,936 98.24%	3,953,163 1.76%	39,535,246	
J,	12 APPROVAL TO ISSUE DIRECTOR OPTIONS – ROBERT AFFLECK	Р	225,066,099	219,688,195 97.61%	3,953,163 1.76%	39,535,246	1,424,741 0.63%	221,112,936 98.24%	3,953,163 1.76%	39,535,246	
	13 RATIFICATION OF PRIOR ISSUE OF SHARES – LISTING RULE 7.1	Р	242,490,695	239,870,230 98.92%	1,195,724 0.49%	22,110,650	1,424,741 0.59%	241,294,971 99.51%	1,195,724 0.49%	22,110,650	

