

### ASX ANNOUNCEMENT

**RED MOUNTAIN MINING LTD** 

# High Grade Claystone Lithium obtained at RMX's Lithic Project, Nevada, USA

### HIGHLIGHTS

- Lithium assay values to a high of 1,254ppm lithium returned from latest surface sampling program at Lithic.
- Highly encouraging results given the very limited historical exploration work in the area.
- 13 samples collected along structurally complex tuffaceous ridges.
- In common with RMX's Mustang Project, Lithic's geology, in the Southern Big Smokey Valley is considered analogous to that of the adjacent Clayton Valley.
- Lithic's claims are expected to be underlain by volcaniclastics and claystone that are interpreted to be the host of lithium in the closed basin.
- A projected thin layer of Quaternary gravels is all that covers parts of the Lithic Project.
- Additional surface samples and mapping aims to further evaluate the Lithic Project's lithology and stratigraphy.



**Figure 1.** Topography and vegetation facing North within Western portion of claim block near (440425E, 4198020N) Datum UTM NAD83/11N. The shovel handle to the left in figure indicates sample location 1792549 (809 ppm Li).

Red Mountain Mining Limited ("**RMX**" or the "**Company**") is pleased to provide an update on reconnaissance lithium surface sampling at the Company's Lithic Project, in Nevada, U.S.A.

A total of 25 surface samples were collected from the Lithic mineral claims, with 13 recent sample results provided in Table 1 & Figure 3. These samples were collected from areas of claystone outcrop mostly in the Western parts of the mineral claim.

The highest assay result of **1,254ppm Li** was taken from a grab sample of grey/green claystone sediments located near the Western edge of the Lithic property.

A total of 3 surface samples returned assay results of over 500ppm Li, which are highly anomalous given the high mobility of lithium in the weathered surficial environment. Typical mineral resource cutoff grade for Claystone lithium in the Big Smoky Valley and Clayton Valley is around 500ppm Li<sup>(a)</sup>.

Note (a): Refer to American Lithium company announcement dated 16 January 2023.

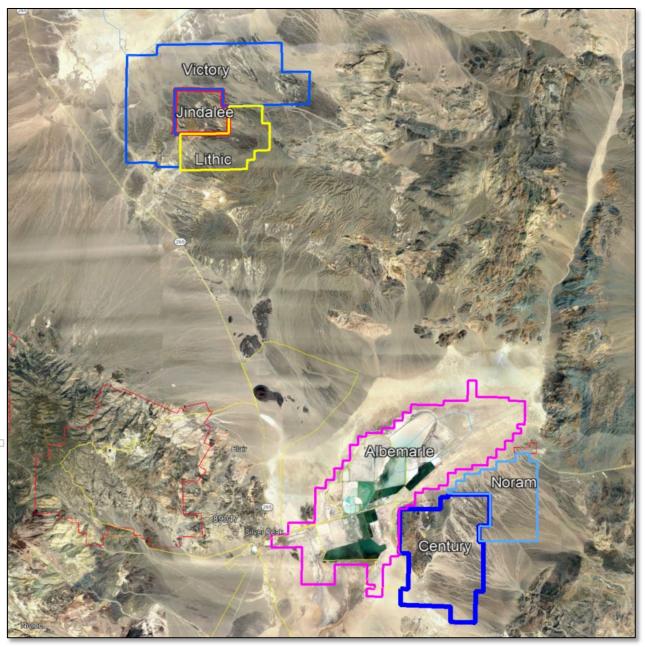



Figure 2. RMX's Lithic Project location, Nevada, USA

|   | Comula #           | Fast             | No           |
|---|--------------------|------------------|--------------|
|   | Sample #           |                  | No           |
|   | 1792537<br>1792538 | 438220<br>438220 | 4195<br>4185 |
| ) | 1792539            | 438314           | 4196         |
| ) | 1792540            | 438473           | 4195         |
| ) | 1792541            | 438732           | 4196         |
|   | 1792542            | 440493           | 4195         |
|   | 1792543            | 440342           | 4195         |
|   | 1792544            | 440473           | 4195         |
|   | 1792545            | 440956           | 4197         |
|   | 1792546            | 440739           | 4197         |
|   | 1792547            | 440622           | 4197         |
|   | 1792548            | 440258           | 4198         |
|   | 1792549            | 440425           | 4198         |

| mple # | East   | North   | Li   | Description                                                                                                                                                      |
|--------|--------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 792537 | 438220 | 4195882 | 551  | Grab, greenishgray clay/siltstone.                                                                                                                               |
| 132331 | 430220 | 4133002 | 331  | Grab, greensigray cray/sitistone.                                                                                                                                |
| 792538 | 438220 | 4185882 | 76   | Grab sample of greenish gray ad orange-<br>yellow in thin beds, saline, dug into cracked<br>swelling clay at surface. Hole ~1' deep.                             |
| 792539 | 438314 | 4196061 | 176  | Grab sample of fluffy, banded reddish and<br>white with thin beds of shaly<br>siltstone/mudstone. Saline with Na/Ca. Hole<br>~1' deep.                           |
| 792540 | 438473 | 4195771 | 63   | Grab sample of olive green fluffy silt/clay<br>with thin white, saline lenses. Dug sample<br>1.5' deep.                                                          |
| 792541 | 438732 | 4196562 | 45   | Grab sample in fluffy olive green silty clay.<br>Saline with observed lenses of white<br>evaporite. Hole 1" deep.                                                |
| 792542 | 440493 | 4195797 | 56   | Grab sample of olive green/gray claystone<br>taken from a shallow excavator/dozer cut.<br>Sampled beneath rind of Fe oxide and<br>combined Na/Ca crystal masses. |
| 792543 | 440342 | 4195530 | 85   | Grab sample from a cut bank at foot of rise.<br>Thin bedded claystones andd siltstones light<br>green/gray. Weak FeOx observed with.                             |
| 792544 | 440473 | 4195009 | 94   | Grab sample of light gray-green claystone.                                                                                                                       |
| 792545 | 440956 | 4197210 | 14   | Grab sample of yellow-green argillized tuff,<br>smells fetid / unpleasant.                                                                                       |
| 792546 | 440739 | 4197350 | 89   | Composite grab of three holes bias 10-15' thickness-claystone.                                                                                                   |
| 792547 | 440622 | 4197309 | 139  | Composite grab bias strata-tuff<br>conglomerate.                                                                                                                 |
| 792548 | 440258 | 4198176 | 1254 | Grab of saline, gray claystone from show 20'<br>thick.                                                                                                           |
| 792549 | 440425 | 4198020 | 809  | Composite grab from 4 holes 100' bias stratigraphy-claystone.                                                                                                    |

 Table 1: Lithic Project's latest sample results

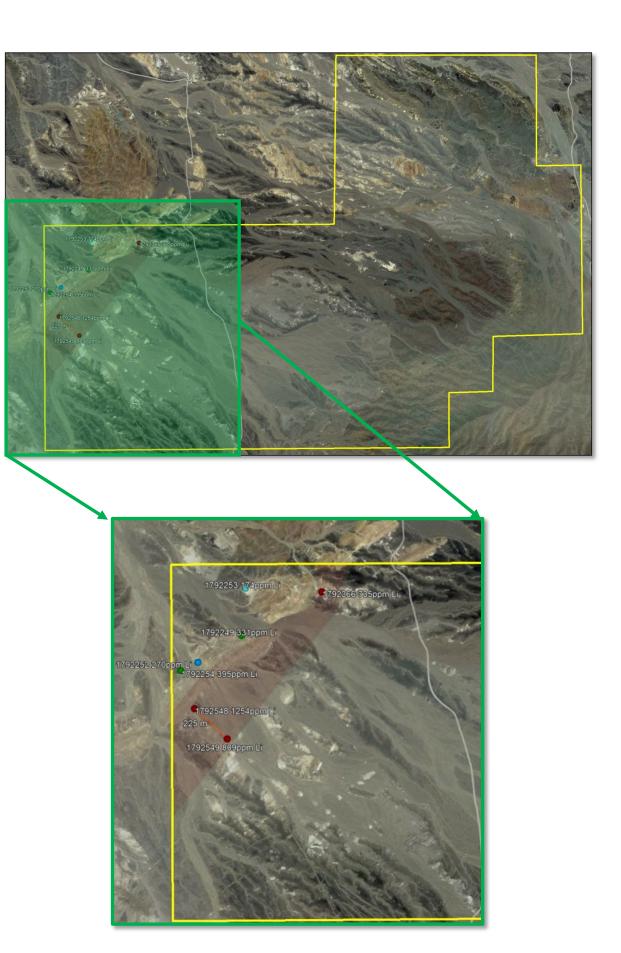



Figure 3. Indicates a theorized high-grade zone as demonstrated by sampling within the Lithic tenement, outlined in yellow.





Figure 4. Swelling smectite grey green clays of sample area 1792366 (beyond stake) yielded 735 ppm Li. (440918E, 4198770N NAD 83 UTM)



Figure 5. 1792348 Blocky, gray-green claystone yielded 1254 ppm Li. (440258E, 4198176N WGS 84 UTM)

### **Exploration plans for Lithic**

The Company intends to conduct additional geological mapping and surface sampling within the Lithic property, notably around areas with lithium values of interest. Subsequent results will assist the upcoming maiden RC drilling program which is expected to comprise wide-spaced drilling down to a maximum depth of 100m. The results from this drilling program will provide information on the lithium mineralization to vector further drilling.

### Why Lithium, Why Nevada?

Lithium is considered a critical mineral around the globe because of a number of factors playing into importance, including:

- Macroeconomic Factors Favorable short, medium, and long-term market fundamentals.
- Environmental Factors Lithium is an indispensable component of electric vehicle batteries and other energy storage solutions required to achieve an electrified and clean energy future.
- Policy Factors A global policy initiative transitioning to a clean energy future. The United States, in particular Nevada, is a Tier-1 mining jurisdiction due to the following reasons:
- Mining Friendly Nevada was ranked the top jurisdiction for mining according to the Fraser Institute 2020 annual survey.
- Geological Setting Nevada hosts the world's largest known lithium deposits including:
  - Defence Production Act The USA has recently invoked the Defense Production Act in an effort to encourage and secure domestic production of battery materials.
  - Offtake Partners Close proximity to gigafactories and manufacturers with substantial lithium supply requirements.
  - Security Nevada enjoys a legal framework characterized by clear laws and reliable enforcement.
  - Policy In the United States there is bipartisan support and funding for promoting clean energy and fostering clean energy investment.
  - Minimal Outlays Nevada has no minimum annual expenditure requirements.

Authorised for and on behalf of the Board,

Mauro Piccini

**Company Secretary** 

#### **Competent Persons Statement**

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of Mark Mitchell, Independent consulting geologist. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

#### Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.32.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above-mentioned announcement.



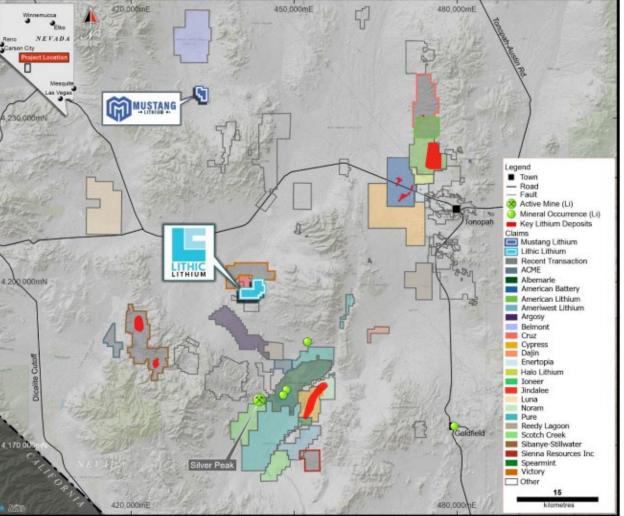



Figure 6. Location map showing RMX's two projects relative to its neighbors in Nevada

#### Lithic Lithium Project (Nevada, USA)

Lithic is located on the on the southern flank of the Big Smokey Valley, 20 km North of Century Lithium's (formerly Cypress Development Corp) Clayton Valley Lithium Project, and 18 km North of Albemarle's brine recovery project.

The Lithic project comprises 115 claims (961 ha) of a generally flat alluvial outwash plane with well exposed fines-dominant sediments beneath lithic tuff caps. The outcrops are finely laminated mudstone beds and volcanic tuff and ash layers. This mixed unit of lacustrine sedimentary beds with minor volcanics is similar to host rocks found at American Lithium's TLC deposit and Cypress' Clayton Valley deposit. This claim area is within the Southern end of Big Smokey Valley known to contain a significant basin of volcanic lacustrine sediments capable of hosting lithium. Tuffaceous sediments are pervasive in the area, many containing significant lithium concentrations.

7

## JORC Code, 2012 Edition – Table 1

#### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | 13 grab samples of between 1-6kg were collected from surface.<br>Samples were submitted to American Assay Laboratories (AAL)<br>(Nevada, U.S.A) where they were prepared by Basic Rock/Drill Prep<br>Package (BRPP2KG).<br>Rock chip samples were analysed using method 4 acid Lithium<br>Exploration 28 element ICP-OES (Lab code: IO-4AB28), with 28<br>elements reported. |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No drilling completed                                                                                                                                                                                                                                                                                                                                                        |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries<br/>and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade<br/>and whether sample bias may have occurred due to preferential<br/>loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No drilling completed                                                                                                                                                                                                                                                                                                                                                        |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No drilling completed                                                                                                                                                                                                                                                                                                                                                        |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | <ul><li>costean, channel, etc) photography.</li><li>The total length and percentage of the relevant intersections logged.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Between 1 and 6kg grab samples were collected from surface.</li> <li>Samples were prepared by Basic Rock/Drill Prep Package<br/>(BRPP2KG) at AAL.</li> <li>The sample size is considered suitable for this stage of<br/>exploration for the commodity in question.</li> <li>No duplicate samples were collected in the field. Duplicate<br/>samples were completed at AAL from reject re-split material.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests  | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                             | <ul> <li>Rock chip samples were analysed at American Assay<br/>Laboratories using 4 acid Lithium Exploration 28 element ICP-<br/>OES (Lab code: IO-4AB28).</li> <li>Laboratory QAQC was utilized in the form of blanks, standards<br/>and duplicates. This was deemed to have passed laboratory and<br/>internal standards for this phase of exploration.</li> </ul>                                                         |
| Verification of<br>sampling and<br>assaying             | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>No significant intersections</li> <li>No twinned drill holes</li> <li>Data is collected using the Gaia GPS application on Ipad. This is downloaded to laptop and tabulated and stored in Microsoft Excel.</li> <li>No adjustments to assay data</li> </ul>                                                                                                                                                          |
| Location of<br>data points                              | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Sample locations are recorded using a Garmin handheld GPS (+/- 3m accuracy).</li> <li>Grid is NAD83 / UTM zone 11N</li> </ul>                                                                                                                                                                                                                                                                                       |
| Data spacing<br>and<br>distribution                     | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Samples were collected at field locations where claystone was<br/>identified by the company geologist.</li> </ul>                                                                                                                                                                                                                                                                                                   |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                            | <ul> <li>Data spacing and distribution would not be suitable for a MRE at this point in the exploration process.</li> <li>No sample composition has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Sample orientation targeted claystone in surface deposits. It is not known if there is any structural control on lithium-bearing claystones.</li> <li>No drilling completed.</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Samples were dug out of the ground, bagged into 7x12" cotton sample bags with sample # printed in black marker on the outside of the bag. A sample tag matching the bag number is placed in the bag. Sample details including coordinated are written into the sample tag book. Bagged samples were then placed into a larger plastic woven bag with sample intervals (contents written on the outside.</li> <li>The samples were transported to AAL in Nevada in the geologists 4wd vehicle.</li> </ul> |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | <ul> <li>Results have been reviewed by other personnel associated with<br/>the company.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |

### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Mineral<br/>tenement and<br/>land tenure<br/>status</i> | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Lithic Project consists of 115 granted claims (961 ha).</li> <li>The project is subject to a Net Smelter Royalty ("NSR") in favour of Lithic Lithium LLC of 2%.</li> <li>There are no native title claims covering the tenement.</li> <li>No heritage surveys were required prior to commencing exploration activities.</li> <li>The Project does not intersect any underlying pastoral lease.</li> <li>The Project does not intersect an area identified as wilderness, national park or an area of environmental interest.</li> </ul> |
| Exploration<br>done by other<br>parties                    | <ul> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Relevant exploration for Lithium at the Lithic and Mustang<br/>Projects during 2022 was undertaken by Lithic Lithium LLC have<br/>included grab, trench and stream sediment samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                             |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geology                                                                         | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The deposit type and main target mineralisation model is of<br/>claystone hosted lithium.</li> </ul>                                                                                    |
| Drill hole<br>Information                                                       | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | No drilling completed                                                                                                                                                                            |
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                               | <ul> <li>No cut-off grades have been used during reporting</li> <li>No metal equivalent values have been reported.</li> </ul>                                                                    |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                           | No drilling completed                                                                                                                                                                            |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Maps and images are included within body of text.</li> </ul>                                                                                                                            |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration Results is not<br/>practicable, representative reporting of both low and high grades<br/>and/or widths should be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>The results and text provided within this report are considered<br/>comprehensive and representative. All significant assay results<br/>have been disclosed within the text.</li> </ul> |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                               |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical<br/>survey results; geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock characteristics; potential<br/>deleterious or contaminating substances.</li> </ul> | <ul> <li>All relevant exploration results and observations have been<br/>reported that are pertinent to this stage of exploration.</li> </ul>                                                                                                            |
| Further work                                | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                           | <ul> <li>Red Mountain shall undertake further geological mapping and<br/>surface sampling to inform future RC drilling programs.</li> <li>The Company continues to assess additional opportunities to<br/>add to its current asset portfolio.</li> </ul> |

### Appendix 1.

| Elements                                                                                                                                                                                                                                                                                                                                          | Wt<br>BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Ag</b><br>10-4AB28                                                                                                                                                                                                                                                             | Al<br>10-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>As</b><br>IO-4AB28                                                                                                                                                                                                                                                                                                                 | <b>Bi</b><br>IO-4AB28                                                                                                                                                                                                          | <b>Ca</b><br>IO-4AB28                                                                                                                                                                                                         | Ce<br>10-4AB28                                                                                                                                                                                                                                                                   | Co<br>10-4AB28                                                                                                                                                                                                                                                                            | Cu<br>10-4AB28                                                                                                                                                                                                                                   | Fe<br>10-4AB28                                                                                                                                                                                                                                                                                                                                   | <b>Ga</b><br>10-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>K</b><br>IO-4AB28                                                                                                                                                                                                                                                    | <b>La</b><br>10-4AB28                                                                                                                                                                                             | Li<br>IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                               | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                              | 300                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |
| SAMPLES                                                                                                                                                                                                                                                                                                                                           | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm                                                                                                                                                                                                                                                                                                                                   | ppm                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 1792545                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                              | 19496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 15863                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                               | 6482                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8978                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |
| 1792546                                                                                                                                                                                                                                                                                                                                           | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                              | 59417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 9084                                                                                                                                                                                                                          | 23<br>54                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                | 17689                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23602                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |
| 1792547                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                              | 70745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 17841                                                                                                                                                                                                                         | 63                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                               | 27161                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23736                                                                                                                                                                                                                                                                   | 34                                                                                                                                                                                                                | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 1792548                                                                                                                                                                                                                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                              | 41149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 55895                                                                                                                                                                                                                         | 34                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                               | 20789                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40443                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                | 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792549                                                                                                                                                                                                                                                                                                                                           | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                              | 51608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 48898                                                                                                                                                                                                                         | 43                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                               | 24126                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38583                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                | 809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |
| Elements                                                                                                                                                                                                                                                                                                                                          | Wt<br>BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Ag</b><br>2AM50                                                                                                                                                                                                                                                                | <b>Al</b><br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>As</b><br>2AM50                                                                                                                                                                                                                                                                                                                    | <b>Bi</b><br>2AM50                                                                                                                                                                                                             | <b>Ca</b><br>2AM50                                                                                                                                                                                                            | <b>Ce</b><br>2AM50                                                                                                                                                                                                                                                               | <b>Co</b><br>2AM50                                                                                                                                                                                                                                                                        | Cu<br>2AM50                                                                                                                                                                                                                                      | <b>Fe</b><br>2AM50                                                                                                                                                                                                                                                                                                                               | <b>Ga</b><br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>K</b><br>2AM50                                                                                                                                                                                                                                                       | <b>La</b><br>2AM50                                                                                                                                                                                                | Li<br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |
| _ U                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| SAMPLES                                                                                                                                                                                                                                                                                                                                           | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm                                                                                                                                                                                                                                                                                                                                   | ppm                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |
| 1792233                                                                                                                                                                                                                                                                                                                                           | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                              | 5824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.6                                                                                                                                                                                                                                                                                                                                  | 0.14                                                                                                                                                                                                                           | 39507                                                                                                                                                                                                                         | 25.0                                                                                                                                                                                                                                                                             | 5.1                                                                                                                                                                                                                                                                                       | 41.2                                                                                                                                                                                                                                             | 18725                                                                                                                                                                                                                                                                                                                                            | 2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1012                                                                                                                                                                                                                                                                    | 10.95                                                                                                                                                                                                             | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 1792234                                                                                                                                                                                                                                                                                                                                           | 3.50<br>2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.05<br>-0.05                                                                                                                                                                                                                                                                    | 2881<br>3667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.0<br>10.7                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                           | 32917<br>4311                                                                                                                                                                                                                 | 67.8<br>82.6                                                                                                                                                                                                                                                                     | 12.6<br>11.6                                                                                                                                                                                                                                                                              | 22.1<br>24.3                                                                                                                                                                                                                                     | 14228<br>18858                                                                                                                                                                                                                                                                                                                                   | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2141<br>2474                                                                                                                                                                                                                                                            | 34.03<br>43.25                                                                                                                                                                                                    | 28.4<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |
| 1792340                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 3475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.7                                                                                                                                                                                                                                                                                                                                  | 0.16                                                                                                                                                                                                                           | 13282                                                                                                                                                                                                                         | 47.9                                                                                                                                                                                                                                                                             | 3.8                                                                                                                                                                                                                                                                                       | 24.5                                                                                                                                                                                                                                             | 5541                                                                                                                                                                                                                                                                                                                                             | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8749                                                                                                                                                                                                                                                                    | 23.84                                                                                                                                                                                                             | 4.4<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |
| 1792340                                                                                                                                                                                                                                                                                                                                           | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 4037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.2                                                                                                                                                                                                                                                                                                                                   | 0.18                                                                                                                                                                                                                           | 5182                                                                                                                                                                                                                          | 61.7                                                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                       | 8.4                                                                                                                                                                                                                                              | 4397                                                                                                                                                                                                                                                                                                                                             | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5463                                                                                                                                                                                                                                                                    | 23.64<br>31.63                                                                                                                                                                                                    | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792342                                                                                                                                                                                                                                                                                                                                           | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 11747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.5                                                                                                                                                                                                                                                                                                                                  | 0.14                                                                                                                                                                                                                           | 3503                                                                                                                                                                                                                          | 117.0                                                                                                                                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                                                              | 7680                                                                                                                                                                                                                                                                                                                                             | 5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13505                                                                                                                                                                                                                                                                   | 60.19                                                                                                                                                                                                             | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 1792343                                                                                                                                                                                                                                                                                                                                           | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 4324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.3                                                                                                                                                                                                                                                                                                                                  | 0.12                                                                                                                                                                                                                           | 11522                                                                                                                                                                                                                         | 37.4                                                                                                                                                                                                                                                                             | 2.3                                                                                                                                                                                                                                                                                       | 15.6                                                                                                                                                                                                                                             | 6882                                                                                                                                                                                                                                                                                                                                             | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3841                                                                                                                                                                                                                                                                    | 18.37                                                                                                                                                                                                             | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792344                                                                                                                                                                                                                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 7090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1                                                                                                                                                                                                                                                                                                                                  | 0.33                                                                                                                                                                                                                           | 45731                                                                                                                                                                                                                         | 44.4                                                                                                                                                                                                                                                                             | 4.5                                                                                                                                                                                                                                                                                       | 14.5                                                                                                                                                                                                                                             | 9233                                                                                                                                                                                                                                                                                                                                             | 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5999                                                                                                                                                                                                                                                                    | 19.79                                                                                                                                                                                                             | 167.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| 1792368                                                                                                                                                                                                                                                                                                                                           | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.05                                                                                                                                                                                                                                                                             | 4060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.6                                                                                                                                                                                                                                                                                                                                  | 0.11                                                                                                                                                                                                                           | 31008                                                                                                                                                                                                                         | 41.1                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                       | 8.1                                                                                                                                                                                                                                              | 5821                                                                                                                                                                                                                                                                                                                                             | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2744                                                                                                                                                                                                                                                                    | 19.91                                                                                                                                                                                                             | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| Elements                                                                                                                                                                                                                                                                                                                                          | Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ac                                                                                                                                                                                                                                                                                | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | As                                                                                                                                                                                                                                                                                                                                    | Bi                                                                                                                                                                                                                             | Ca                                                                                                                                                                                                                            | Ce                                                                                                                                                                                                                                                                               | Co                                                                                                                                                                                                                                                                                        | Cu                                                                                                                                                                                                                                               | Fe                                                                                                                                                                                                                                                                                                                                               | Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | к                                                                                                                                                                                                                                                                       | La                                                                                                                                                                                                                | Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |
| 75                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ag<br>ICP-5A036                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       | ICP-5A036                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  | ICP-5A036                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICP-5A036                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |
| ))                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| SAMPLES                                                                                                                                                                                                                                                                                                                                           | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm                                                                                                                                                                                                                                                                                                                                   | ppm                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                       | ppm                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                              | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 1792251                                                                                                                                                                                                                                                                                                                                           | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 41471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 41744                                                                                                                                                                                                                         | 29                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                               | 26449                                                                                                                                                                                                                                                                                                                                            | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32775                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                | 75.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792252                                                                                                                                                                                                                                                                                                                                           | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 58510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 23992                                                                                                                                                                                                                         | 29                                                                                                                                                                                                                                                                               | 9<br>4                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                               | 15813                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44922                                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                | 270.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| STD-AMIS 0621                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.5                                                                                                                                                                                                                                                                              | 68674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 944                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                | 2552                                                                                                                                                                                                                                                                                      | >10000                                                                                                                                                                                                                                           | 39470                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4022                                                                                                                                                                                                                                                                    | -10                                                                                                                                                                                                               | 403.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| 1792253                                                                                                                                                                                                                                                                                                                                           | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 65015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157                                                                                                                                                                                                                                                                                                                                   | -5                                                                                                                                                                                                                             | 27558                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                               | 32754                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46888                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                                | 173.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| 1792254                                                                                                                                                                                                                                                                                                                                           | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 59823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171                                                                                                                                                                                                                                                                                                                                   | -5                                                                                                                                                                                                                             | 47132                                                                                                                                                                                                                         | 49                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                         | 26                                                                                                                                                                                                                                               | 27299                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53689                                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                | 395.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| 1792255                                                                                                                                                                                                                                                                                                                                           | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 53200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 93362                                                                                                                                                                                                                         | 61                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                | 27282                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20693                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                                                                | 40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792256                                                                                                                                                                                                                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 83634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 30984                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                               | 32676                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24218                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                | 60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792257                                                                                                                                                                                                                                                                                                                                           | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 83658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 26020                                                                                                                                                                                                                         | 63                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                               | 44665                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30560                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                                                                | 68.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792258                                                                                                                                                                                                                                                                                                                                           | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 64037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                     | -5                                                                                                                                                                                                                             | 70055                                                                                                                                                                                                                         | 54                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                               | 32604                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27017                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                | 63.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
| 1792366                                                                                                                                                                                                                                                                                                                                           | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 50948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                             | 67151                                                                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                               | 26189                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47037                                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                | 735.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
| 1792345                                                                                                                                                                                                                                                                                                                                           | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5                                                                                                                                                                                                                                                                              | 69974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                     | -5                                                                                                                                                                                                                             | 10517                                                                                                                                                                                                                         | 86                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                               | 12992                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28310                                                                                                                                                                                                                                                                   | 46                                                                                                                                                                                                                | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |
| Elements                                                                                                                                                                                                                                                                                                                                          | Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mg                                                                                                                                                                                                                                                                                | Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Na                                                                                                                                                                                                                                                                                                                                    | Ni                                                                                                                                                                                                                             | Pb                                                                                                                                                                                                                            | s                                                                                                                                                                                                                                                                                | Sb                                                                                                                                                                                                                                                                                        | Sc                                                                                                                                                                                                                                               | Sr                                                                                                                                                                                                                                                                                                                                               | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tl                                                                                                                                                                                                                                                                      | v                                                                                                                                                                                                                 | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |
| Elements                                                                                                                                                                                                                                                                                                                                          | BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28                                                                                                                                                                                                                                                                          | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28                                                                                                                                                                                                                                                                                                                              | IO-4AB28                                                                                                                                                                                                                       | IO-4AB28                                                                                                                                                                                                                      | IO-4AB28                                                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                  | IO-4AB28                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO-4AB28                                                                                                                                                                                                                                                                | IO-4AB28                                                                                                                                                                                                          | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-                                                                                                                                                                                                                                               |
| 101                                                                                                                                                                                                                                                                                                                                               | BRPP2KG<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>100                                                                                                                                                                                                                                                                   | IO-4AB28<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>100                                                                                                                                                                                                                                                                                                                       | 10-4AB28<br>2                                                                                                                                                                                                                  | IO-4AB28<br>3                                                                                                                                                                                                                 | IO-4AB28<br>30                                                                                                                                                                                                                                                                   | 10-4AB28<br>2                                                                                                                                                                                                                                                                             | IO-4AB28<br>1                                                                                                                                                                                                                                    | IO-4AB28<br>5                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO-4AB28<br>10                                                                                                                                                                                                                                                          | IO-4AB28<br>3                                                                                                                                                                                                     | IO-4AB28<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IO-                                                                                                                                                                                                                                               |
| SAMPLES                                                                                                                                                                                                                                                                                                                                           | BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28                                                                                                                                                                                                                                                                          | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28                                                                                                                                                                                                                                                                                                                              | IO-4AB28                                                                                                                                                                                                                       | IO-4AB28                                                                                                                                                                                                                      | IO-4AB28                                                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                  | IO-4AB28                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                                                                         | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO-4AB28                                                                                                                                                                                                                                                                | IO-4AB28                                                                                                                                                                                                          | IO-4AB28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4                                                                                                                                                                                                                                              |
| SAMPLES                                                                                                                                                                                                                                                                                                                                           | BRPP2KG<br>0.01<br>kg<br>0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100                                                                                                                                                                                                                                                                   | IO-4AB28<br>5<br>ppm<br>116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>100<br>ppm<br>2231                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>2<br>ppm<br>8                                                                                                                                                                                                      | IO-4AB28<br>3<br>ppm<br>34                                                                                                                                                                                                    | IO-4AB28<br>30<br>ppm<br>183713                                                                                                                                                                                                                                                  | 10-4AB28<br>2                                                                                                                                                                                                                                                                             | IO-4AB28<br>1<br>ppm<br>3                                                                                                                                                                                                                        | IO-4AB28<br>5                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>30<br>ppm<br>1291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28<br>10                                                                                                                                                                                                                                                          | IO-4AB28<br>3<br>ppm<br>32                                                                                                                                                                                        | IO-4AB28<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IO-4<br>P                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546                                                                                                                                                                                                                                                                                                                     | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>7181                                                                                                                                                                                                                                            | 10-4AB28<br>5<br>ppm<br>116<br>349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4AB28<br>100<br>ppm<br>2231<br>>40000                                                                                                                                                                                                                                                                                              | IO-4AB28<br>2<br>ppm<br>8<br>9                                                                                                                                                                                                 | IO-4AB28<br>3<br>ppm<br>34<br>31                                                                                                                                                                                              | IO-4AB28<br>30<br>ppm<br>183713<br>6953                                                                                                                                                                                                                                          | IO-4AB28<br>2<br>ppm<br>4<br>-2                                                                                                                                                                                                                                                           | IO-4AB28<br>1<br>ppm<br>3<br>4                                                                                                                                                                                                                   | IO-4AB28<br>5<br>ppm<br>231<br>222                                                                                                                                                                                                                                                                                                               | IO-4AB28<br>30<br>ppm<br>1291<br>1439                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>10<br>ppm<br>-10<br>-10                                                                                                                                                                                                                                     | IO-4AB28<br>3<br>ppm<br>32<br>35                                                                                                                                                                                  | IO-4AB28<br>1<br>ppm<br>5<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-4<br>p                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547                                                                                                                                                                                                                                                                                                          | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895                                                                                                                                                                                                                                   | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000                                                                                                                                                                                                                                                                                    | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17                                                                                                                                                                                           | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20                                                                                                                                                                                        | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370                                                                                                                                                                                                                                  | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2                                                                                                                                                                                                                                                     | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8                                                                                                                                                                                                              | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10                                                                                                                                                                                                                              | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71                                                                                                                                                                            | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-4<br>p                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792547<br>1792548                                                                                                                                                                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160                                                                                                                                                                                                                          | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227                                                                                                                                                                                                                                                                           | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23                                                                                                                                                                                     | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14                                                                                                                                                                                  | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935                                                                                                                                                                                                                          | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2                                                                                                                                                                                                                                               | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6                                                                                                                                                                                                         | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821                                                                                                                                                                                                                                                                                                | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10                                                                                                                                                                                                                       | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74                                                                                                                                                                      | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-4<br>p                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547                                                                                                                                                                                                                                                                                                          | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895                                                                                                                                                                                                                                   | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000                                                                                                                                                                                                                                                                                    | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17                                                                                                                                                                                           | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20                                                                                                                                                                                        | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370                                                                                                                                                                                                                                  | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2                                                                                                                                                                                                                                                     | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8                                                                                                                                                                                                              | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10                                                                                                                                                                                                                              | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71                                                                                                                                                                            | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-4<br>p                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792547<br>1792548                                                                                                                                                                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160                                                                                                                                                                                                                          | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227                                                                                                                                                                                                                                                                           | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23                                                                                                                                                                                     | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14                                                                                                                                                                                  | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935                                                                                                                                                                                                                          | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2                                                                                                                                                                                                                                               | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6                                                                                                                                                                                                         | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821                                                                                                                                                                                                                                                                                                | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10                                                                                                                                                                                                                       | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74                                                                                                                                                                      | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-4<br>P                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792548<br>1792549                                                                                                                                                                                                                                                                         | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057                                                                                                                                                                                                                 | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909                                                                                                                                                                                                                                                                  | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23                                                                                                                                                                               | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19                                                                                                                                                                            | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987                                                                                                                                                                                                                  | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5                                                                                                                                                                                                                                          | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7                                                                                                                                                                                                    | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886                                                                                                                                                                                                                                                                                         | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10                                                                                                                                                                                                                | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104                                                                                                                                                               | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-4<br>P                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements                                                                                                                                                                                                                                                                        | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br><b>Wt</b><br>BRPP2KG<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b>                                                                                                                                                                                                    | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909<br>Na                                                                                                                                                                                                                                                            | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>23<br><b>Ni</b>                                                                                                                                                            | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b>                                                                                                                                                               | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b>                                                                                                                                                                                                      | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b>                                                                                                                                                                                                                             | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b>                                                                                                                                                                                       | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b>                                                                                                                                                                                                                                                                            | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b>                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b>                                                                                                                                                                                                   | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b>                                                                                                                                                   | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-4<br>P                                                                                                                                                                                                                                         |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792548<br>1792549                                                                                                                                                                                                                                                                         | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50                                                                                                                                                                                           | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50                                                                                                                                                                                                                                            | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>23<br><b>Ni</b><br>2AM50                                                                                                                                                   | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50                                                                                                                                                      | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50                                                                                                                                                                                             | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50                                                                                                                                                                                                                    | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br>7<br><b>Sc</b><br>2AM50                                                                                                                                                                         | 10-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50                                                                                                                                                                                                                                                                   | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50                                                                                                                                                                                          | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50                                                                                                                                          | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO-<br>F<br>27                                                                                                                                                                                                                                    |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements                                                                                                                                                                                                                                                                        | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br><b>Wt</b><br>BRPP2KG<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100                                                                                                                                                                                    | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100                                                                                                                                                                                                                                     | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1                                                                                                                                            | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3                                                                                                                                                 | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100                                                                                                                                                                                      | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05                                                                                                                                                                                                            | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01                                                                                                                                                                      | 10-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1                                                                                                                                                                                                                                                              | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10                                                                                                                                                                                                                                                                                                                                                                                                                      | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002                                                                                                                                                                                 | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1                                                                                                                                     | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br>¥<br>2AM50<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>P<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                      |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES                                                                                                                                                                                                                                                             | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm                                                                                                                                                                             | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm                                                                                                                                                                                                                                        | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm                                                                                                                                           | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm                                                                                                                                          | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm                                                                                                                                                                               | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm                                                                                                                                                                                                     | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm                                                                                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm                                                                                                                                                                                                                                                       | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                               | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm                                                                                                                                                                          | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm                                                                                                                              | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IO-4<br>P<br>2<br>4<br>5<br>6<br>6<br>6<br>6<br>7<br>2<br>8<br>7<br>8<br>9<br>7<br>1                                                                                                                                                              |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233                                                                                                                                                                                                                                                  | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br><b>Wt</b><br>BRPP2KG<br>0.01<br>kg<br>1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102                                                                                                                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254                                                                                                                                                                                                                               | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8                                                                                                                                   | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8                                                                                                                                     | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984                                                                                                                                                                       | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74                                                                                                                                                                                                   | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84                                                                                                                                                                                                                                                 | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452                                                                                                                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138                                                                                                                                                                 | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm                                                                                                                              | IO-4AB28<br>1<br>ppm<br>5<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO<br>P<br>2<br>2<br>A<br>P                                                                                                                                                                                                                       |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792235<br>1792235<br>1792340                                                                                                                                                                                                      | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRP22KG<br>0.01<br>kg<br>1.60<br>3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634                                                                                                                                                             | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686                                                                                                                                                                                                                      | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2                                                                                                                           | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13                                                                                                                               | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984<br>17928                                                                                                                                                              | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40                                                                                                                                                                                     | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28                                                                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133                                                                                                                                                                                                                                          | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068                                                                                                                                                        | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9                                                                                                                          | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4<br>pp<br>2<br>4<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>2<br>8<br>9<br>9<br>9<br>1<br>1<br>4<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                   |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br><b>Elements</b><br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>17922340<br>1792341                                                                                                                                                                                              | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912                                                                                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579                                                                                                                                                                                            | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5                                                                                                     | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14                                                                                                             | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914                                                                                                                                      | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67                                                                                                                                                                   | 10-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20                                                                                                                       | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141                                                                                                                                                                                                                     | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426                                                                                                                                           | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13                                                                                                 | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO<br>PP<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                          |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792235<br>1792340<br>1792341<br>1792342                                                                                                                                                                                | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.00<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>1895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1915                                                                                                                                      | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326                                                                                                                                                                                   | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3                                                                                              | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31                                                                                                       | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519                                                                                                                              | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65                                                                                                                                                     | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34                                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655                                                                                                                                                                                                              | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503                                                                                                                    | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1                                                                                            | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4<br>P<br>2<br>4<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>1<br>1<br>1<br>4<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7             |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792233<br>1792234<br>1792235<br>1792234<br>1792235<br>1792341<br>1792342<br>1792342<br>1792343                                                                                                                                                          | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937                                                                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397                                                                                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1                                                                                       | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10                                                                                                 | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260                                                                                                                      | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05                                                                                                                                                           | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132                                                                                                                                                                                                       | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327                                                                                                                  | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>♥<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14                                                                                             | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4<br>pp<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                       |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792340<br>1792340<br>1792341<br>1792342<br>1792343<br>1792343<br>1792344                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10<br>1.10<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>5478                                                                                                             | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136                                                                                                                                                                 | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>15.5<br>3.5<br>1.3<br>3.1<br>6.1                                                                                       | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13                                                                                           | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690                                                                                                               | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65<br>1.05<br>2.22                                                                                                                                           | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298                                                                                                                                                                                                | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138                                                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220                                                                                                                | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21                                                                                | IO-4AB28<br>1<br>ppm<br>5<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO-4<br>pp<br>2<br>2<br>4<br>4<br>4<br>6<br>6<br>6<br>6<br>6<br>7<br>2<br>AA<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>4<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792233<br>1792234<br>1792235<br>1792234<br>1792235<br>1792341<br>1792342<br>1792342<br>1792343                                                                                                                                                          | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937                                                                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397                                                                                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1                                                                                       | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10                                                                                                 | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260                                                                                                                      | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05                                                                                                                                                           | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69                                                                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132                                                                                                                                                                                                       | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327                                                                                                                  | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>♥<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14                                                                                             | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IO-4<br>pp<br>2<br>2<br>4<br>4<br>4<br>6<br>6<br>6<br>6<br>6<br>7<br>2<br>AA<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>A<br>2<br>4<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792340<br>1792340<br>1792341<br>1792342<br>1792343<br>1792343<br>1792344                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10<br>1.20<br>0.80<br>Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>1895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>5478<br>4155                                                                                                      | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b>                                                                                                                                           | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b>                                                            | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b>                                                                         | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>8</b>                                                                                           | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b>                                                                                                                              | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b>                                                                          | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b>                                                                                                                                                                            | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b>                                                                                                                                                                                                                                                                                                                                         | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1                                                                                                 | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V                                                                            | IO-4AB28<br>1<br>ppm<br>5<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IO<br>FF<br>22A<br>FF<br>11<br>                                                                                                                                                                                                                   |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792235<br>1792340<br>1792341<br>1792342<br>1792343<br>1792343<br>1792343<br>1792343<br>1792343                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>4155<br><b>Mg</b><br>ICP-5A036                                                                                           | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036                                                                                                                              | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5A036                                               | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5AO36                                                            | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br>ICP-5A036                                                                              | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036                                                                                                                 | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036                                                             | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>238<br>237<br><b>Sr</b><br>ICP-5A036                                                                                                                                                          | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>138<br>102<br><b>Ti</b>                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5A036                                                                                    | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036                                                               | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO                                                                                                                                                                                                                                                |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792234<br>1792340<br>1792342<br>1792343<br>1792344<br>1792343<br>1792344<br>1792368<br>Elements                                                                                                                        | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRP2KG<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                      | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1015<br>2937<br>5478<br>4155<br>2937<br>5475<br>4155                                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>2777<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100                                                                                                                       | ICO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5AO36<br>1                                   | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5AO36<br>3                                                       | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br><b>I</b> CP-5AO36<br>100                                                               | ICO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2                                                                                                   | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5AO36<br>1                                                        | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1                                                                                                                                                          | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>1002<br><b>Ti</b><br>ICP-5A036<br>10                                                                                                                                                                                                                                                                                                                     | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br><b>T1</b><br>ICP-5A036<br>10                                                         | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1                                                          | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>¥</b><br>ICP-5A036<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO<br>PP<br>2A<br>PP<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>CP                                                                                                                                                       |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792235<br>1792340<br>1792341<br>1792342<br>1792343<br>1792343<br>1792343<br>1792343<br>1792343                                                                                                                                    | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRPP2KG                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>4155<br><b>Mg</b><br>ICP-5A036                                                                                           | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036                                                                                                                              | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5A036                                               | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5AO36                                                            | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br>ICP-5A036                                                                              | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036                                                                                                                 | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036                                                             | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>238<br>237<br><b>Sr</b><br>ICP-5A036                                                                                                                                                          | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>138<br>102<br><b>Ti</b>                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5A036                                                                                    | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036                                                               | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO                                                                                                                                                                                                                                                |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792340<br>1792341<br>1792341<br>1792342<br>1792343<br>1792343<br>1792344<br>1792348<br>Elements<br>SAMPLES<br>1792251                                                                                       | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>1.00<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.53                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>1895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1135<br>2937<br>5478<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm                                                                      | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>443<br>173<br>443<br>173<br>443<br>173<br>443<br>173<br>1443<br>173<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>1443<br>173<br>9<br>173<br>9<br>1443<br>173<br>173<br>9<br>1443<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>17 | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm                                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5A036<br>1<br>ppm<br>23                                           | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10                                          | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br>ICP-5A036<br>100<br>ppm<br>6386                                                        | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6                                                                                                | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6                                            | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>491                                                                                                                                            | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>1002<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219                                                                                                                                                                                                                                                                                                      | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br><b>T1</b><br>ICP-5A036<br>10<br>ppm<br>-10                                           | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81                                             | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036<br>1<br>ppm<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO<br>F<br>2<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                            |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792342<br>1792342<br>1792343<br>1792343<br>1792343<br>1792343<br>1792343<br>1792348<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792251<br>1792252                                                      | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRP2KG<br>0.01<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                        | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>937<br>5478<br>4155<br>2937<br>5478<br>4155<br><b>Mg</b><br>1CP-5A036<br>100<br>ppm                                                      | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>8268<br>26186<br>8268<br>26186<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>XMS0<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5A036<br>1<br>ppm<br>23<br>8                                      | ICO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5AO36<br>3<br>ppm<br>10<br>15                                   | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>\$</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>\$</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020                                              | IC-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2                                                                                  | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6<br>4                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm                                                                                                                                                   | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466                                                                                                                                                                                                                                                                                               | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>TI<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>TI<br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10               | ICO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br><b>V</b><br>ICP-5AQ36<br>1<br>ppm<br>81<br>41                        | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>X</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>X</b><br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO<br>P<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                            |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792341<br>1792341<br>1792343<br>1792344<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792252<br>STD-AMIS 0621                                                           | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>0.80<br>Wt<br>BRP2KG<br>0.01<br>kg<br>1.53<br>1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>5478<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm<br>23769<br>13906<br>86885                                         | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>1725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm                                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5A036<br>1<br>ppm<br>23<br>8<br>44                  | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3                               | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>8</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020<br>248                                         | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2                                    | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br>Sc<br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br>Sc<br>ICP-5A036<br>1<br>ppm<br>6<br>4<br>12                                               | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>ICP-5A036<br>1<br>ppm                                                                                                                          | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2495<br>24<br>54<br>138<br>102<br><b>Ti</b><br>102<br>24<br>54<br>138<br>102<br><b>Ti</b><br>103<br>24<br>54<br>138<br>102<br><b>Ti</b><br>103<br>24<br>54<br>138<br>102<br><b>Ti</b><br>138<br>102<br><b>Ti</b><br>138<br>138<br>102<br><b>Ti</b><br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138 | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10               | IC-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>87                                 | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036<br>1<br>ppm<br>8<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IO<br>F<br>2<br>2<br>2<br>4<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                        |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br><b>Blements</b><br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792234<br>1792341<br>1792341<br>1792341<br>1792341<br>1792343<br>1792343<br>1792343<br>1792343<br>1792368<br><b>Blements</b><br>SAMPLES<br>1792251<br>1792251<br>1792252<br>STD-AMIS 0621<br>1792253 | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.10<br>1.10<br>0.80<br>Wt<br>BRP22KG<br>0.01<br>kg<br>1.53<br>1.09<br>1.91                                                                                                                                                                                                                                                                                                                                                                                              | IO-4AB28<br>100<br>ppm<br>2854<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>2192<br>1135<br>2937<br>5478<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm                                                                     | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>327<br>270<br>1725<br>462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm                                                                                                                | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5A036<br>1<br>ppm<br>23<br>8<br>44<br>57                          | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3<br>19                         | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>8</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>8</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020<br>248<br>2747                                 | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>6                                                                               | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6<br>4<br>12<br>9                            | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>491<br>342<br>14<br>503                                                                                                                        | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414                                                                                                                                                                                                                                                                                      | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br><b>T1</b><br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10 | ID-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>170                                | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br>Y<br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br>Y<br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>3<br>4<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO<br>F<br>2AA<br>F<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                              |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792234<br>1792340<br>1792342<br>1792343<br>1792344<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792251<br>1792252<br>STD-AMIS 0621<br>1792254                          | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>1.20<br>1.30<br><b>Wt</b><br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.10<br>1.20<br>0.80<br><b>Wt</b><br>BRPP2KG<br>0.01<br>kg<br>1.50<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.2                                                                                                                                                                                                                                 | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>1895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1915<br>2937<br>5478<br>4155<br>2937<br>5478<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm<br>23769<br>13906<br>86855<br>17475<br>21812 | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>2777<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>1725<br>462<br>388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm<br>65648<br>21880<br>462<br>20546<br>17854                                                                     | IC-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br><b>Ni</b><br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br><b>Ni</b><br>ICP-5AO36<br>1<br>ppm<br>23<br>8<br>44<br>57<br>20      | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5AO36<br>3<br>ppm<br>10<br>15<br>3<br>19<br>15                   | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020<br>248<br>2747<br>4112                         | IC-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>6<br>6<br>6<br>6                                                                | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5AO36<br>1<br>ppm<br>6<br>4<br>12<br>9<br>8                       | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5AO36<br>1<br>ppm<br>491<br>342<br>14<br>503<br>591                                                                                                                 | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414<br>2628                                                                                                                                                                                                                                                                              | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5AO36<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10        | IC-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br><b>V</b><br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br><b>V</b><br>ICP-5AO36<br>1<br>ppm<br>81<br>41<br>87<br>170<br>97      | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>¥</b><br>ICP-5AO36<br>1<br>ppm<br>8<br>8<br>34<br>12<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IO-4<br>P<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                        |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792234<br>1792234<br>1792342<br>1792343<br>1792343<br>1792343<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792251<br>1792253<br>1792253<br>1792254<br>1792255<br>0621<br>1792255  | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.20<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>kg<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.20<br>0.80<br>0.11<br>0<br>1.20<br>0.80<br>1.20<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.30<br>1.20<br>1.20<br>1.30<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.2 | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>2937<br>5478<br>4155<br><b>Mg</b><br>1CP-5A036<br>100<br>ppm<br>23769<br>13906<br>86885<br>17475<br>21812<br>7300                | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>1725<br>462<br>328<br>506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>8268<br>26186<br>8268<br>26186<br>8268<br>26186<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>10902<br><b>Na</b><br>ICP-5A036<br>10902<br><b>Xa</b><br>ICP-5A036<br>10902<br><b>Xa</b> | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5A036<br>1<br>ppm<br>23<br>8<br>44<br>57<br>20<br>25              | IC-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3<br>13                         | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>\$</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>\$</b><br>ICP-5A036<br>1000<br>ppm<br>6386<br>1020<br>248<br>2747<br>4112<br>5031              | IC-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>6<br>6<br>4                                                             | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6<br>4<br>12<br>9<br>8<br>8<br>8     | IC-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>6555<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5AO36<br>1<br>ppm<br>491<br>342<br>14<br>503<br>591<br>287                                                                                                         | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414<br>268<br>1913                                                                                                                                                                                                                                                                | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br><b>T1</b><br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br><b>T1</b><br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10 | IC-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>87<br>170<br>97<br>116             | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>34<br>12<br>16<br>10<br>10<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IO                                                                                                                                                                                                                                                |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792341<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792252<br>STD-AMIS 0621<br>1792255<br>1792255<br>1792255<br>1792256                                                | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>1.00<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm<br>23769<br>13906<br>86885<br>17475<br>21812<br>7302<br>21829              | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>42<br>294<br>163<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>1725<br>462<br>388<br>506<br>425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm<br>465648<br>21880<br>462<br>20546<br>17854<br>3626<br>8387                                                    | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5A036<br>1<br>ppm<br>23<br>8<br>44<br>57<br>20<br>25<br>37        | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3<br>19<br>15<br>13<br>26       | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>630<br>3195<br><b>S</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020<br>248<br>2747<br>4112<br>5031<br>1473         | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>6<br>6<br>4<br>-2                                                               | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6<br>4<br>2<br>9<br>8<br>8<br>12             | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>238<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>491<br>342<br>14<br>503<br>591<br>247<br>228                                                                                              | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414<br>2628<br>1913<br>2711                                                                                                                                                                                                                                                       | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10               | ID-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>87<br>170<br>97<br>116<br>87       | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>34<br>12<br>16<br>10<br>14<br>14<br>14<br>14<br>9<br>10<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>14<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>14<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | IO-4<br>P<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                        |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792234<br>1792340<br>1792341<br>1792342<br>1792343<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792252<br>STD-AMIS 0621<br>1792253<br>1792256<br>1792256<br>1792257               | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>1.00<br>1.60<br>3.50<br>2.70<br>1.00<br>1.60<br>3.50<br>2.70<br>1.00<br>1.10<br>1.10<br>1.20<br>0.80<br>Wt<br>BRP2KG<br>0.01<br>kg<br>1.53<br>1.09<br>1.37<br>1.37<br>1.35<br>1.20<br>1.37<br>1.39                                                                                                                                                                                                                                                                                                                             | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>100<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1135<br>2937<br>5478<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm<br>23769<br>13906<br>86885<br>17475<br>21812<br>7309<br>4395        | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>2777<br>1739<br>1443<br>173<br>442<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5AO36<br>5<br>ppm<br>327<br>270<br>1725<br>462<br>388<br>506<br>425<br>472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IO-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>1000<br>ppm<br>65648<br>21880<br>462<br>20546<br>17854<br>3626<br>8387<br>16803                                           | ICO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5AO36<br>1<br>ppm<br>23<br>8<br>44<br>57<br>20<br>25<br>37<br>33 | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3<br>19<br>15<br>13<br>26<br>12 | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>690<br>3195<br><b>S</b><br>ICP-5AO36<br>100<br>ppm<br>6386<br>1020<br>248<br>2747<br>4112<br>5031<br>1473<br>1561 | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.67<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5AO36<br>2<br>ppm<br>6<br>-2<br>-2<br>6<br>6<br>4<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5AO36<br>1<br>ppm<br>6<br>4<br>12<br>9<br>8<br>8<br>12<br>13      | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>298<br>230<br>141<br>655<br>132<br>298<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>491<br>342<br>14<br>591<br>287<br>291<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287 | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>1002<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414<br>2628<br>1913<br>2711<br>2092                                                                                                                                                                                                                                              | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10                                                                                                                                                                                           | IO-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>87<br>170<br>97<br>116<br>87<br>89 | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>¥</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>¥</b><br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>34<br>12<br>16<br>10<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>16<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>10<br>12<br>10<br>10<br>12<br>10<br>10<br>10<br>12<br>10<br>10<br>10<br>10<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                      | IO-44 PP 2 2 4 4 5 6 6 6 7 2 2 Alation 2 1 1 1 1 1 6 6 2 2 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                    |
| SAMPLES<br>1792545<br>1792546<br>1792547<br>1792548<br>1792549<br>Elements<br>SAMPLES<br>1792233<br>1792234<br>1792234<br>1792234<br>1792341<br>1792343<br>1792344<br>1792368<br>Elements<br>SAMPLES<br>1792251<br>1792251<br>1792252<br>STD-AMIS 0621<br>1792255<br>1792255<br>1792255<br>1792256                                                | BRPP2KG<br>0.01<br>kg<br>0.60<br>2.80<br>0.90<br>1.20<br>1.30<br>Wt<br>BRPP2KG<br>0.01<br>1.00<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IO-4AB28<br>100<br>ppm<br>2854<br>7181<br>11895<br>55160<br>41057<br><b>Mg</b><br>2AM50<br>ppm<br>6102<br>3634<br>1168<br>2242<br>1912<br>1135<br>2937<br>4155<br><b>Mg</b><br>ICP-5A036<br>100<br>ppm<br>23769<br>13906<br>86885<br>17475<br>21812<br>7302<br>21829              | IO-4AB28<br>5<br>ppm<br>116<br>349<br>144<br>468<br>511<br><b>Mn</b><br>2AM50<br>5<br>ppm<br>277<br>1739<br>1443<br>173<br>42<br>294<br>163<br>42<br>294<br>163<br>42<br>294<br>163<br>469<br>279<br><b>Mn</b><br>ICP-5A036<br>5<br>ppm<br>327<br>270<br>1725<br>462<br>388<br>506<br>425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID-4AB28<br>100<br>ppm<br>2231<br>>40000<br>33227<br>26909<br><b>Na</b><br>2AM50<br>100<br>ppm<br>19254<br>23686<br>8268<br>26186<br>21579<br>26326<br>15397<br>16136<br>10902<br><b>Na</b><br>ICP-5A036<br>100<br>ppm<br>465648<br>21880<br>462<br>20546<br>17854<br>3626<br>8387                                                    | IO-4AB28<br>2<br>ppm<br>8<br>9<br>17<br>23<br>23<br>Ni<br>2AM50<br>0.1<br>ppm<br>15.8<br>11.2<br>12.1<br>5.5<br>3.5<br>1.3<br>3.1<br>6.1<br>4.6<br>Ni<br>ICP-5A036<br>1<br>ppm<br>23<br>8<br>44<br>57<br>20<br>25<br>37        | IO-4AB28<br>3<br>ppm<br>34<br>31<br>20<br>14<br>19<br><b>Pb</b><br>2AM50<br>3<br>ppm<br>8<br>13<br>17<br>12<br>14<br>31<br>10<br>13<br>9<br><b>Pb</b><br>ICP-5A036<br>3<br>ppm<br>10<br>15<br>3<br>19<br>15<br>13<br>26       | IO-4AB28<br>30<br>ppm<br>183713<br>6953<br>5370<br>3935<br>2987<br><b>S</b><br>2AM50<br>100<br>ppm<br>2984<br>17928<br>2959<br>5956<br>2914<br>5519<br>4260<br>630<br>3195<br><b>S</b><br>ICP-5A036<br>100<br>ppm<br>6386<br>1020<br>248<br>2747<br>4112<br>5031<br>1473         | IO-4AB28<br>2<br>ppm<br>4<br>-2<br>-2<br>5<br><b>Sb</b><br>2AM50<br>0.05<br>ppm<br>3.74<br>1.40<br>1.37<br>0.64<br>0.65<br>1.05<br>2.22<br>1.29<br><b>Sb</b><br>ICP-5A036<br>2<br>ppm<br>6<br>-2<br>-2<br>6<br>6<br>4<br>-2                                                               | IO-4AB28<br>1<br>ppm<br>3<br>4<br>8<br>6<br>7<br><b>Sc</b><br>2AM50<br>0.01<br>ppm<br>2.87<br>2.28<br>1.35<br>1.75<br>2.20<br>0.34<br>1.69<br>1.41<br>1.37<br><b>Sc</b><br>ICP-5A036<br>1<br>ppm<br>6<br>4<br>2<br>9<br>8<br>8<br>12             | IO-4AB28<br>5<br>ppm<br>231<br>222<br>476<br>5821<br>886<br><b>Sr</b><br>2AM50<br>1<br>1<br>ppm<br>84<br>133<br>109<br>230<br>141<br>655<br>132<br>238<br>237<br><b>Sr</b><br>ICP-5A036<br>1<br>ppm<br>491<br>342<br>14<br>503<br>591<br>247<br>228                                                                                              | IO-4AB28<br>30<br>ppm<br>1291<br>1439<br>2894<br>1581<br>2309<br><b>Ti</b><br>2AM50<br>10<br>ppm<br>452<br>77<br>72<br>75<br>97<br>24<br>54<br>138<br>102<br><b>Ti</b><br>ICP-5A036<br>10<br>ppm<br>2219<br>1466<br>1806<br>2414<br>2628<br>1913<br>2711                                                                                                                                                                                                                                                       | IO-4AB28<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>T1<br>2AM50<br>0.002<br>ppm<br>0.138<br>2.068<br>1.048<br>0.324<br>0.426<br>0.503<br>0.327<br>0.220<br>0.289<br>T1<br>ICP-5A036<br>10<br>ppm<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10               | ID-4AB28<br>3<br>ppm<br>32<br>35<br>71<br>74<br>104<br>V<br>2AM50<br>1<br>ppm<br>60<br>9<br>10<br>12<br>13<br>1<br>14<br>21<br>18<br>V<br>ICP-5A036<br>1<br>ppm<br>81<br>41<br>87<br>170<br>97<br>116<br>87       | IO-4AB28<br>1<br>ppm<br>5<br>14<br>14<br>9<br>10<br><b>Y</b><br>2AM50<br>0.1<br>ppm<br>10.0<br>12.9<br>8.0<br>11.0<br>14.2<br>10.2<br>5.1<br>9.9<br>9.6<br><b>Y</b><br>ICP-5A036<br>1<br>ppm<br>8<br>8<br>34<br>12<br>16<br>10<br>14<br>14<br>14<br>14<br>9<br>10<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>14<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>14<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>12.9<br>10<br>10<br>10<br>12.9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 2 2<br>IO-44<br>5<br>5<br>6<br>6<br>7<br>2<br>2<br>4<br>4<br>4<br>5<br>5<br>6<br>6<br>7<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                     |